Artigos de revistas sobre o tema "Artificial Neural Networks and Recurrent Neutral Networks"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Artificial Neural Networks and Recurrent Neutral Networks".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Prathibha, Dr G., Y. Kavya, P. Vinay Jacob e L. Poojita. "Speech Emotion Recognition Using Deep Learning". INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, n.º 07 (4 de julho de 2024): 1–13. http://dx.doi.org/10.55041/ijsrem36262.
Texto completo da fonteAli, Ayesha, Ateeq Ur Rehman, Ahmad Almogren, Elsayed Tag Eldin e Muhammad Kaleem. "Application of Deep Learning Gated Recurrent Unit in Hybrid Shunt Active Power Filter for Power Quality Enhancement". Energies 15, n.º 20 (13 de outubro de 2022): 7553. http://dx.doi.org/10.3390/en15207553.
Texto completo da fontePranav Kumar Chaudhary, Aakash Kishore Chotrani, Raja Mohan, Mythili Boopathi, Piyush Ranjan, Madhavi Najana,. "Ai in Fraud Detection: Evaluating the Efficacy of Artificial Intelligence in Preventing Financial Misconduct". Journal of Electrical Systems 20, n.º 3s (4 de abril de 2024): 1332–38. http://dx.doi.org/10.52783/jes.1508.
Texto completo da fonteNassif, Ali Bou, Ismail Shahin, Mohammed Lataifeh, Ashraf Elnagar e Nawel Nemmour. "Empirical Comparison between Deep and Classical Classifiers for Speaker Verification in Emotional Talking Environments". Information 13, n.º 10 (27 de setembro de 2022): 456. http://dx.doi.org/10.3390/info13100456.
Texto completo da fonteLee, Hong Jae, e Tae Seog Kim. "Comparison and Analysis of SNN and RNN Results for Option Pricing and Deep Hedging Using Artificial Neural Networks (ANN)". Academic Society of Global Business Administration 20, n.º 5 (30 de outubro de 2023): 146–78. http://dx.doi.org/10.38115/asgba.2023.20.5.146.
Texto completo da fonteSutskever, Ilya, e Geoffrey Hinton. "Temporal-Kernel Recurrent Neural Networks". Neural Networks 23, n.º 2 (março de 2010): 239–43. http://dx.doi.org/10.1016/j.neunet.2009.10.009.
Texto completo da fonteWang, Rui. "Generalisation of Feed-Forward Neural Networks and Recurrent Neural Networks". Applied and Computational Engineering 40, n.º 1 (21 de fevereiro de 2024): 242–46. http://dx.doi.org/10.54254/2755-2721/40/20230659.
Texto completo da fontePoudel, Sushan, e Dr R. Anuradha. "Speech Command Recognition using Artificial Neural Networks". JOIV : International Journal on Informatics Visualization 4, n.º 2 (26 de maio de 2020): 73. http://dx.doi.org/10.30630/joiv.4.2.358.
Texto completo da fonteTurner, Andrew James, e Julian Francis Miller. "Recurrent Cartesian Genetic Programming of Artificial Neural Networks". Genetic Programming and Evolvable Machines 18, n.º 2 (8 de agosto de 2016): 185–212. http://dx.doi.org/10.1007/s10710-016-9276-6.
Texto completo da fonteZiemke, Tom. "Radar image segmentation using recurrent artificial neural networks". Pattern Recognition Letters 17, n.º 4 (abril de 1996): 319–34. http://dx.doi.org/10.1016/0167-8655(95)00128-x.
Texto completo da fonteMASKARA, ARUN, e ANDREW NOETZEL. "Sequence Recognition with Recurrent Neural Networks". Connection Science 5, n.º 2 (janeiro de 1993): 139–52. http://dx.doi.org/10.1080/09540099308915692.
Texto completo da fonteKawano, Makoto, e Kazuhiro Ueda. "Microblog Geolocation Estimation with Recurrent Neural Networks". Transactions of the Japanese Society for Artificial Intelligence 32, n.º 1 (2017): WII—E_1–8. http://dx.doi.org/10.1527/tjsai.wii-e.
Texto completo da fonteAliev, R. A., B. G. Guirimov, Bijan Fazlollahi e R. R. Aliev. "Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks". Fuzzy Sets and Systems 160, n.º 17 (setembro de 2009): 2553–66. http://dx.doi.org/10.1016/j.fss.2008.12.018.
Texto completo da fonteImam, Nabil. "Wiring up recurrent neural networks". Nature Machine Intelligence 3, n.º 9 (setembro de 2021): 740–41. http://dx.doi.org/10.1038/s42256-021-00391-2.
Texto completo da fonteDalhoum, Abdel Latif Abu, e Mohammed Al-Rawi. "High-Order Neural Networks are Equivalent to Ordinary Neural Networks". Modern Applied Science 13, n.º 2 (27 de janeiro de 2019): 228. http://dx.doi.org/10.5539/mas.v13n2p228.
Texto completo da fonteGoudreau, Mark W., e C. Lee Giles. "Using recurrent neural networks to learn the structure of interconnection networks". Neural Networks 8, n.º 5 (janeiro de 1995): 793–804. http://dx.doi.org/10.1016/0893-6080(95)00025-u.
Texto completo da fonteLalapura, Varsha S., J. Amudha e Hariramn Selvamuruga Satheesh. "Recurrent Neural Networks for Edge Intelligence". ACM Computing Surveys 54, n.º 4 (maio de 2021): 1–38. http://dx.doi.org/10.1145/3448974.
Texto completo da fonteDobnikar, Andrej, e Branko Šter. "Structural Properties of Recurrent Neural Networks". Neural Processing Letters 29, n.º 2 (12 de fevereiro de 2009): 75–88. http://dx.doi.org/10.1007/s11063-009-9096-2.
Texto completo da fonteSemyonov, E. D., M. Ya Braginsky, D. V. Tarakanov e I. L. Nazarova. "NEURAL NETWORK FORECASTING OF INPUT PARAMETERS IN OIL DEVELOPMENT". PROCEEDINGS IN CYBERNETICS 22, n.º 4 (2023): 42–51. http://dx.doi.org/10.35266/1999-7604-2023-4-6.
Texto completo da fonteDimopoulos, Nikitas J., John T. Dorocicz, Chris Jubien e Stephen Neville. "Training Asymptotically Stable Recurrent Neural Networks". Intelligent Automation & Soft Computing 2, n.º 4 (janeiro de 1996): 375–88. http://dx.doi.org/10.1080/10798587.1996.10750681.
Texto completo da fontePhan, Manh Cong, e Martin T. Hagan. "Error Surface of Recurrent Neural Networks". IEEE Transactions on Neural Networks and Learning Systems 24, n.º 11 (novembro de 2013): 1709–21. http://dx.doi.org/10.1109/tnnls.2013.2258470.
Texto completo da fonteValle, Marcos Eduardo. "Complex-Valued Recurrent Correlation Neural Networks". IEEE Transactions on Neural Networks and Learning Systems 25, n.º 9 (setembro de 2014): 1600–1612. http://dx.doi.org/10.1109/tnnls.2014.2341013.
Texto completo da fonteGoundar, Sam, Suneet Prakash, Pranil Sadal e Akashdeep Bhardwaj. "Health Insurance Claim Prediction Using Artificial Neural Networks". International Journal of System Dynamics Applications 9, n.º 3 (julho de 2020): 40–57. http://dx.doi.org/10.4018/ijsda.2020070103.
Texto completo da fonteWANG, JUN. "ON THE ASYMPTOTIC PROPERTIES OF RECURRENT NEURAL NETWORKS FOR OPTIMIZATION". International Journal of Pattern Recognition and Artificial Intelligence 05, n.º 04 (outubro de 1991): 581–601. http://dx.doi.org/10.1142/s0218001491000338.
Texto completo da fonteMartins, T. D., J. M. Annichino-Bizzacchi, A. V. C. Romano e R. Maciel Filho. "Artificial neural networks for prediction of recurrent venous thromboembolism". International Journal of Medical Informatics 141 (setembro de 2020): 104221. http://dx.doi.org/10.1016/j.ijmedinf.2020.104221.
Texto completo da fonteSaleh, Shadi. "Artificial Intelligence & Machine Learning in Computer Vision Applications". Embedded Selforganising Systems 7, n.º 1 (20 de fevereiro de 2020): 2–3. http://dx.doi.org/10.14464/ess71432.
Texto completo da fontede Vos, N. J. "Echo state networks as an alternative to traditional artificial neural networks in rainfall–runoff modelling". Hydrology and Earth System Sciences 17, n.º 1 (22 de janeiro de 2013): 253–67. http://dx.doi.org/10.5194/hess-17-253-2013.
Texto completo da fonteLan, Nur, Michal Geyer, Emmanuel Chemla e Roni Katzir. "Minimum Description Length Recurrent Neural Networks". Transactions of the Association for Computational Linguistics 10 (2022): 785–99. http://dx.doi.org/10.1162/tacl_a_00489.
Texto completo da fonteNasr, Mounir Ben, e Mohamed Chtourou. "Training recurrent neural networks using a hybrid algorithm". Neural Computing and Applications 21, n.º 3 (31 de dezembro de 2010): 489–96. http://dx.doi.org/10.1007/s00521-010-0506-1.
Texto completo da fonteChen, Z. Y., C. P. Kwong e Z. B. Xu. "Multiple-valued feedback and recurrent correlation neural networks". Neural Computing & Applications 3, n.º 4 (dezembro de 1995): 242–50. http://dx.doi.org/10.1007/bf01414649.
Texto completo da fonteGoulas, Alexandros, Fabrizio Damicelli e Claus C. Hilgetag. "Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks". Neural Networks 142 (outubro de 2021): 608–18. http://dx.doi.org/10.1016/j.neunet.2021.07.011.
Texto completo da fonteFreitag, Steffen, Wolfgang Graf e Michael Kaliske. "Recurrent neural networks for fuzzy data". Integrated Computer-Aided Engineering 18, n.º 3 (17 de junho de 2011): 265–80. http://dx.doi.org/10.3233/ica-2011-0373.
Texto completo da fonteCarta, Antonio, Alessandro Sperduti e Davide Bacciu. "Encoding-based memory for recurrent neural networks". Neurocomputing 456 (outubro de 2021): 407–20. http://dx.doi.org/10.1016/j.neucom.2021.04.051.
Texto completo da fonteGraves, Daniel, e Witold Pedrycz. "Fuzzy prediction architecture using recurrent neural networks". Neurocomputing 72, n.º 7-9 (março de 2009): 1668–78. http://dx.doi.org/10.1016/j.neucom.2008.07.009.
Texto completo da fonteCruse, Hoik, Jeffrey Dean, Thomas Kindermann, Josef Schmitz e Michael Schumm. "Simulation of Complex Movements Using Artificial Neural Networks". Zeitschrift für Naturforschung C 53, n.º 7-8 (1 de agosto de 1998): 628–38. http://dx.doi.org/10.1515/znc-1998-7-816.
Texto completo da fonteGANCHEV, TODOR. "ENHANCED TRAINING FOR THE LOCALLY RECURRENT PROBABILISTIC NEURAL NETWORKS". International Journal on Artificial Intelligence Tools 18, n.º 06 (dezembro de 2009): 853–81. http://dx.doi.org/10.1142/s0218213009000433.
Texto completo da fonteLeung, Chi-Sing, e Lai-Wan Chan. "Dual extended Kalman filtering in recurrent neural networks". Neural Networks 16, n.º 2 (março de 2003): 223–39. http://dx.doi.org/10.1016/s0893-6080(02)00230-7.
Texto completo da fonteParga, N., L. Serrano-Fernández e J. Falcó-Roget. "Emergent computations in trained artificial neural networks and real brains". Journal of Instrumentation 18, n.º 02 (1 de fevereiro de 2023): C02060. http://dx.doi.org/10.1088/1748-0221/18/02/c02060.
Texto completo da fonteZiemke, Tom. "Radar Image Segmentation Using Self-Adapting Recurrent Networks". International Journal of Neural Systems 08, n.º 01 (fevereiro de 1997): 47–54. http://dx.doi.org/10.1142/s0129065797000070.
Texto completo da fonteFRANKLIN, JUDY A., e KRYSTAL K. LOCKE. "RECURRENT NEURAL NETWORKS FOR MUSICAL PITCH MEMORY AND CLASSIFICATION". International Journal on Artificial Intelligence Tools 14, n.º 01n02 (fevereiro de 2005): 329–42. http://dx.doi.org/10.1142/s0218213005002120.
Texto completo da fonteMa, Tingsong, Ping Kuang e Wenhong Tian. "An improved recurrent neural networks for 3d object reconstruction". Applied Intelligence 50, n.º 3 (23 de outubro de 2019): 905–23. http://dx.doi.org/10.1007/s10489-019-01523-3.
Texto completo da fonteHuang, Chuangxia, Yigang He e Ping Chen. "Dynamic Analysis of Stochastic Recurrent Neural Networks". Neural Processing Letters 27, n.º 3 (11 de abril de 2008): 267–76. http://dx.doi.org/10.1007/s11063-008-9075-z.
Texto completo da fonteStepchenko, Arthur, e Jurij Chizhov. "NDVI Short-Term Forecasting Using Recurrent Neural Networks". Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 3 (16 de junho de 2015): 180. http://dx.doi.org/10.17770/etr2015vol3.167.
Texto completo da fonteManfredini, Ricardo Augusto. "Hybrid Artificial Neural Networks for Electricity Consumption Prediction". International Journal of Advanced Engineering Research and Science 9, n.º 8 (2022): 292–99. http://dx.doi.org/10.22161/ijaers.98.32.
Texto completo da fonteSiriporananon, Somsak, e Boonlert Suechoey. "Power Losses Analysis in a Three-Phase Distribution Transformer Using Artificial Neural Networks". ECTI Transactions on Electrical Engineering, Electronics, and Communications 18, n.º 2 (31 de agosto de 2020): 130–36. http://dx.doi.org/10.37936/ecti-eec.2020182.223203.
Texto completo da fonteBacciu, Davide, e Francesco Crecchi. "Augmenting Recurrent Neural Networks Resilience by Dropout". IEEE Transactions on Neural Networks and Learning Systems 31, n.º 1 (janeiro de 2020): 345–51. http://dx.doi.org/10.1109/tnnls.2019.2899744.
Texto completo da fonteLiu, Shiwei, Iftitahu Ni’mah, Vlado Menkovski, Decebal Constantin Mocanu e Mykola Pechenizkiy. "Efficient and effective training of sparse recurrent neural networks". Neural Computing and Applications 33, n.º 15 (26 de janeiro de 2021): 9625–36. http://dx.doi.org/10.1007/s00521-021-05727-y.
Texto completo da fonteZhai, Jun-Yong, Shu-Min Fei e Xiao-Hui Mo. "Multiple models switching control based on recurrent neural networks". Neural Computing and Applications 17, n.º 4 (24 de agosto de 2007): 365–71. http://dx.doi.org/10.1007/s00521-007-0123-9.
Texto completo da fonteKhan, Yaser Daanial, Farooq Ahmed e Sher Afzal Khan. "Situation recognition using image moments and recurrent neural networks". Neural Computing and Applications 24, n.º 7-8 (24 de março de 2013): 1519–29. http://dx.doi.org/10.1007/s00521-013-1372-4.
Texto completo da fontePENG, CHUN-CHENG, e GEORGE D. MAGOULAS. "ADVANCED ADAPTIVE NONMONOTONE CONJUGATE GRADIENT TRAINING ALGORITHM FOR RECURRENT NEURAL NETWORKS". International Journal on Artificial Intelligence Tools 17, n.º 05 (outubro de 2008): 963–84. http://dx.doi.org/10.1142/s0218213008004242.
Texto completo da fonte