Literatura científica selecionada sobre o tema "Arithmetical hyperplanes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Arithmetical hyperplanes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Arithmetical hyperplanes"
Bergeron, Nicolas, Frédéric Haglund e Daniel T. Wise. "Hyperplane sections in arithmetic hyperbolic manifolds". Journal of the London Mathematical Society 83, n.º 2 (11 de fevereiro de 2011): 431–48. http://dx.doi.org/10.1112/jlms/jdq082.
Texto completo da fonteWalter, Charles H. "Hyperplane sections of arithmetically Cohen-Macaulay curves". Proceedings of the American Mathematical Society 123, n.º 9 (1 de setembro de 1995): 2651. http://dx.doi.org/10.1090/s0002-9939-1995-1260185-2.
Texto completo da fonteRu, Min. "Geometric and Arithmetic Aspects of P n Minus Hyperplanes". American Journal of Mathematics 117, n.º 2 (abril de 1995): 307. http://dx.doi.org/10.2307/2374916.
Texto completo da fonteHanniel, Iddo. "Solving multivariate polynomial systems using hyperplane arithmetic and linear programming". Computer-Aided Design 46 (janeiro de 2014): 101–9. http://dx.doi.org/10.1016/j.cad.2013.08.022.
Texto completo da fonteBrowning, Tim, e Shuntaro Yamagishi. "Arithmetic of higher-dimensional orbifolds and a mixed Waring problem". Mathematische Zeitschrift 299, n.º 1-2 (5 de março de 2021): 1071–101. http://dx.doi.org/10.1007/s00209-021-02695-w.
Texto completo da fonteHoelscher, Zachary. "Semicomplete Arithmetic Sequences, Division of Hypercubes, and the Pell Constant". PUMP Journal of Undergraduate Research 4 (25 de fevereiro de 2021): 108–16. http://dx.doi.org/10.46787/pump.v4i0.2524.
Texto completo da fonteFraser, Jonathan M., Kota Saito e Han Yu. "Dimensions of Sets Which Uniformly Avoid Arithmetic Progressions". International Mathematics Research Notices 2019, n.º 14 (2 de novembro de 2017): 4419–30. http://dx.doi.org/10.1093/imrn/rnx261.
Texto completo da fonteAmerik, Ekaterina, e Misha Verbitsky. "Collections of Orbits of Hyperplane Type in Homogeneous Spaces, Homogeneous Dynamics, and Hyperkähler Geometry". International Mathematics Research Notices 2020, n.º 1 (8 de fevereiro de 2018): 25–38. http://dx.doi.org/10.1093/imrn/rnx319.
Texto completo da fonteBandyopadhyay, Saptarashmi, Jason Xu, Neel Pawar e David Touretzky. "Interactive Visualizations of Word Embeddings for K-12 Students". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junho de 2022): 12713–20. http://dx.doi.org/10.1609/aaai.v36i11.21548.
Texto completo da fonteKnutsen, Andreas Leopold, Margherita Lelli-Chiesa e Giovanni Mongardi. "Severi varieties and Brill–Noether theory of curves on abelian surfaces". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, n.º 749 (1 de abril de 2019): 161–200. http://dx.doi.org/10.1515/crelle-2016-0029.
Texto completo da fonteTeses / dissertações sobre o assunto "Arithmetical hyperplanes"
Laboureix, Bastien. "Hyperplans arithmétiques : connexité, reconnaissance et transformations". Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0040.
Texto completo da fonteThe digital world is littered with discrete mathematical structures, designed to be easily manipulated by a computer while giving our brains the impression of beautiful continuous real shapes. Digital images can thus be seen as subsets of Z^2. In discrete geometry, we are interested in the structures of Z^d and seek to establish geometric or topological properties on these objects. While the questions we ask are relatively simple in Euclidean geometry, they become much more difficult in discrete geometry: no more division, goodbye to limits, everything is just arithmetic. This thesis is also an opportunity to juggle many elementary notions of mathematics and computer science (linear algebra, rings, automata, real analysis, arithmetic, combinatorics) to solve discrete geometry questions. We are interested in the fundamental structures of this geometry: arithmetic hyperplanes. These have a very simple and purely arithmetical definition: an arithmetical hyperplane is the set of integer points lying between two parallel (real) affine hyperplanes. In this thesis, we discuss three problems involving arithmetic hyperplanes:- connectedness: is an arithmetic hyperplane composed of a single piece or of several pieces? The main contribution of this manuscript is to extend results already known for facewise connectedness for any neighbourhood. While certain phenomena remain in the general case, the combinatorial explosion makes it difficult to adapt known algorithms to solve the problem. We therefore adopt an analytical approach and prove connectivity properties by studying the regularity of a function. - recognition: how can we find out the characteristics of an arithmetic hyperplane? This is a more traditional problem in discrete geometry, with a very rich literature. To solve it, we propose a recognition algorithm based on the generalised Stern-Brocot tree. In particular, we introduce the notion of separating chord, which geometrically characterises the zones to which the parameters of an arithmetic hyperplane belong. - soft transformations: how can an arithmetic hyperplane be continuously transformed using translations or rotations? A discrete approach to homotopic transformations, we characterise the possible pixel movements in a discrete structure while preserving its geometric properties. Beyond the study of these problems and the results we were able to obtain, this thesis shows the interest of using the reals, and in particular real analysis, to better understand arithmetic hyperplanes. Arithmetic hyperplanes are largely characterised by their normal vector, which is often considered integer to obtain periodicity properties. Considering any real normal vectors provides greater flexibility and eliminates the noise induced by the arithmetic relationships of the vector. Finally, opening up to the real again is a way of building bridges to other branches of mathematics, such as word combinatorics or numbering systems
Livros sobre o assunto "Arithmetical hyperplanes"
Barg, Alexander, e O. R. Musin. Discrete geometry and algebraic combinatorics. Providence, Rhode Island: American Mathematical Society, 2014.
Encontre o texto completo da fonteMathematical Legacy of Richard P. Stanley. American Mathematical Society, 2016.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Arithmetical hyperplanes"
Jamet, Damien, e Jean-Luc Toutant. "On the Connectedness of Rational Arithmetic Discrete Hyperplanes". In Discrete Geometry for Computer Imagery, 223–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11907350_19.
Texto completo da fonteDomenjoud, Eric, Bastien Laboureix e Laurent Vuillon. "Facet Connectedness of Arithmetic Discrete Hyperplanes with Non-Zero Shift". In Discrete Geometry for Computer Imagery, 38–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14085-4_4.
Texto completo da fonteLaboureix, Bastien, e Isabelle Debled-Rennesson. "Recognition of Arithmetic Line Segments and Hyperplanes Using the Stern-Brocot Tree". In Lecture Notes in Computer Science, 16–28. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57793-2_2.
Texto completo da fonte