Literatura científica selecionada sobre o tema "Aquifers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Aquifers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Aquifers"
Wu, Ming-Chang, e Ping-Cheng Hsieh. "Influence of nonuniform recharge on groundwater flow in heterogeneous aquifers". AIMS Mathematics 8, n.º 12 (2023): 30120–41. http://dx.doi.org/10.3934/math.20231540.
Texto completo da fonteHera-Portillo, África de la, Julio López-Gutiérrez, Beatriz Mayor, Elena López-Gunn, Hans Jørgen Henriksen, Ryle Nørskov Gejl, Pedro Zorrilla-Miras e Pedro Martínez-Santos. "An Initial Framework for Understanding the Resilience of Aquifers to Groundwater Pumping". Water 13, n.º 4 (17 de fevereiro de 2021): 519. http://dx.doi.org/10.3390/w13040519.
Texto completo da fonteMaulana, Fivry Wellda, e Arie Noor Rakhman. "Aplikasi Geofisika Terpadu Untuk Penelitian Potensi Air Tanah Aquifer Batu Pasir Di Alasombo, Indonesia". Jurnal Multidisiplin Madani 2, n.º 1 (30 de janeiro de 2022): 511–24. http://dx.doi.org/10.54259/mudima.v2i1.418.
Texto completo da fonteLuo, Zhaoyang, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li e David Andrew Barry. "Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers". Hydrology and Earth System Sciences 25, n.º 12 (23 de dezembro de 2021): 6591–602. http://dx.doi.org/10.5194/hess-25-6591-2021.
Texto completo da fonteTsepav, Matthew Tersoo, Aliyu Yahaya Badeggi, Obaje Nuhu George, Usman Yusuf Tanko e Ibrahim Samuel Ibbi. "On the Use of Electrical Resistivity Method in Mapping Potential Sources and Extent of Pollution of Groundwater Systems in Lapai Town, Niger State, Nigeria." Journal of Physics: Theories and Applications 5, n.º 1 (30 de março de 2021): 18. http://dx.doi.org/10.20961/jphystheor-appl.v5i1.51563.
Texto completo da fonteSalvador, N., J. P. Monteiro, R. Hugman, T. Y. Stigter e E. Reis. "Quantifying and modelling the contribution of streams that recharge the Querença-Silves aquifer in the south of Portugal". Natural Hazards and Earth System Sciences 12, n.º 11 (6 de novembro de 2012): 3217–27. http://dx.doi.org/10.5194/nhess-12-3217-2012.
Texto completo da fonteZhang, Yi, e Dong Ming Guo. "Temperature Field of Single-Well Aquifer Thermal Energy Storage in Sanhejian Coal Mine". Advanced Materials Research 415-417 (dezembro de 2011): 1028–31. http://dx.doi.org/10.4028/www.scientific.net/amr.415-417.1028.
Texto completo da fonteZhang, Yi, e Dong Ming Guo. "Temperature Field of Doublet-Wells Aquifer Thermal Energy Storage in Sanhejian Coal Mine". Advanced Materials Research 430-432 (janeiro de 2012): 746–49. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.746.
Texto completo da fonteSingh, K. P. "Nonlinear estimation of aquifer parameters from surficial resistivity measurements". Hydrology and Earth System Sciences Discussions 2, n.º 3 (10 de junho de 2005): 917–38. http://dx.doi.org/10.5194/hessd-2-917-2005.
Texto completo da fonteJaka Yuwana, Ngudi Aji, Nora Herdiana Pandjaitan e Roh Santoso Budi Waspodo. "Prediksi cadangan air tanah berdasarkan hasil pendugaan geolistrik di Kabupaten Grobogan, Jawa Tengah". JURNAL SUMBER DAYA AIR 13, n.º 1 (27 de dezembro de 2017): 23–36. http://dx.doi.org/10.32679/jsda.v13i1.139.
Texto completo da fonteTeses / dissertações sobre o assunto "Aquifers"
Chen, Yiming. "Aquifer storage and recovery in saline aquifers". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52266.
Texto completo da fonteArtiola, Janick. "Arizona Aquifers". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2013. http://hdl.handle.net/10150/298168.
Texto completo da fonteAbout 5% of Arizona's population depends on private wells for fresh water and more than 40% of our annual water use comes from Arizona's aquifers. Following a brief introduction to regulations, requirements and equipment used for drilling a private well in Arizona, this video presents the geologic origins of Arizona's aquifer materials with illustrations and pictures of AZ aquifers. Finally, aquifers are ranked by their ability to store and produce water.
Payne, Scott Marshall. "Classification of aquifers". Diss., [Missoula, Mont.] : The University of Montana, 2010. http://etd.lib.umt.edu/theses/available/etd-03082010-112041.
Texto completo da fonteSun, Xiaobin. "Testing and evaluation of artesian aquifers in Table Mountain Group aquifers". University of the Western Cape, 2014. http://hdl.handle.net/11394/4369.
Texto completo da fonteThe Table Mountain Group (TMG) Aquifer is a huge aquifer system which may provide large bulk water supplies for local municipalities and irrigation water for agriculture in the Western Cape and Eastern Cape Provinces in South Africa. In many locations, water pressure in an aquifer may force groundwater out of ground surface so that the borehole drilled into the aquifer would produce overflow without a pump. Appropriate testing and evaluation of such artesian aquifers is very critical for sound evaluation and sustainable utilization of groundwater resources in the TMG area. However, study on this aspect of hydrogeology in TMG is limited. Although the flow and storage of TMG aquifer was conceptualised in previous studies, no specific study on artesian aquifer in TMG was made available. There are dozens of flowing artesian boreholes in TMG in which the pressure heads in the boreholes are above ground surface locally. A common approach to estimate hydraulic properties of the aquifers underneath is to make use of free-flowing and recovery tests conducted on a flowing artesian borehole. However, such testing approach was seldom carried out in TMG due to lack of an appropriate device readily available for data collection. A special hydraulic test device was developed for data collection in this context. The test device was successfully tested at a flowing artesian borehole in TMG. The device can not only be used to measure simultaneous flow rate and pressure head at the test borehole, but also be portable and flexible for capturing the data during aquifer tests in similar conditions like artesian holes in Karoo, dolomite or other sites in which pressure head is above ground surface. The straight-line method proposed by Jacob-Lohman is often adopted for data interpretation. However, the approach may not be able to analyse the test data from flowing artesian holes in TMG. The reason is that the TMG aquifers are often bounded by impermeable faults or folds at local or intermediate scale, which implies that some assumptions of infinite aquifer required for the straight-line method cannot be fulfilled. Boundary conditions based on the Jacob-Lohman method need to be considered during the simulation. In addition, the diagnostic plot analysis method using reciprocal rate derivative is adapted to cross-check the results from the straight-line method. The approach could help identify the flow regimes and discern the boundary conditions, of which results further provide useful information to conceptualize the aquifer and facilitate an appropriate analytical method to evaluate the aquifer properties. Two case studies in TMG were selected to evaluate the hydraulic properties of artesian aquifers using the above methods. The transmissivities of the artesian aquifer in TMG range from 0.6 to 46.7 m2/d based on calculations with recovery test data. Storativities range from 10-4 to 10-3 derived from free-flowing test data analysis. For the aquifer at each specific site, the transmissivity value of the artesian aquifer in Rawsonville is estimated to be 7.5–23 m2/d, with storativity value ranging from 2.0×10-4 to 5.5×10-4. The transmissivity value of the artesian aquifer in Oudtshoorn is approximately 37 m2/d, with S value of 1.16×10-3. The simulation results by straight-line and diagnostic plot analysis methods, not only imply the existence of negative skin zone in the vicinity of the test boreholes, but also highlight the fact that the TMG aquifers are often bounded by impermeable faults or folds at local or intermediate scale. With the storativity values of artesian aquifers derived from data interpretation, total groundwater storage capacity of aquifers at two case studies was calculated. The figures will provide valuable information for decision-makers to plan and develop sustainable groundwater utilization of artesian aquifers in local or intermediate scales. With the hydraulic test device readily available for data collection, more aquifer tests can be carried out in other overflow artesian boreholes in TMG. It becomes feasible to determine the hydraulic properties of artesian aquifers for the entire TMG. Thereof quantification of groundwater resources of artesian aquifers in TMG at a mega-scale becomes achievable. This would also contribute towards global research initiative for quantification of groundwater resources at a mega-scale.
Wendelborn, Anke. "Zinc and copper behaviour during stormwater aquifer storage and recovery in sandy aquifers". Monash University. Faculty of Engineering. Department of Civil Engineering, Institute for Sustainable Water Resources, 2008. http://arrow.monash.edu.au/hdl/1959.1/68715.
Texto completo da fonteShamsudduha, Mohammad. "Mineralogical and geochemical profiling of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain, Minikganj, Bangladesh". Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Spring%20Theses/SHAMSUDDUHA_MOHAMMAD_47.pdf.
Texto completo da fonteWilliams, David G. "Whole aquifer system management: the northeast floridan aquifer system under an interstate compact". Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/30907.
Texto completo da fontePark, Chan-Hee. "Saltwater Intrusion in Coastal Aquifers". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4857.
Texto completo da fonteTeo, Hhih-Ting, e h. teo@griffith edu au. "Tidal Dynamics in Coastal Aquifers". Griffith University. School of Engineering, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030729.155028.
Texto completo da fonteHalihan, Todd. "Permeability structure in fractured aquifers /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Texto completo da fonteLivros sobre o assunto "Aquifers"
Pyne, R. David G. Groundwater recharge and wells: A guide to aquifer storage recovery. Boca Raton: Lewis Publishers, 1995.
Encontre o texto completo da fonteCook, Marlon R. The Eutaw aquifer in Alabama. Tuscaloosa, Ala. (420 Hackberry Lane, Tuscaloosa 35486-9780): Geological Survey of Alabama, Hydrogeology Division, 1993.
Encontre o texto completo da fonteJohnston, Richard H. Summary of the hydrology of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. Washington, D.C: U.S. G.P.O., 1988.
Encontre o texto completo da fonteClark, Allan K. Geologic framework of the Edwards aquifer and upper confining unit, and hydrogeologic characteristics of the Edwards aquifer, south-central Uvalde County, Texas. Austin, Tex: U.S. Geological Survey, 1997.
Encontre o texto completo da fonteJohnston, Richard H. Summary of the hydrology of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. Washington, DC: U.S. Dept. of the Interior, 1988.
Encontre o texto completo da fonteClark, Allan K. Geologic framework of the Edwards aquifer and upper confining unit, and hydrogeologic characteristics of the Edwards aquifer, south-central Uvalde County, Texas. Austin, Tex: U.S. Geological Survey, 1997.
Encontre o texto completo da fonteClark, Allan K. Geologic framework of the Edwards aquifer and upper confining unit, and hydrogeologic characteristics of the Edwards aquifer, south-central Uvalde County, Texas. Austin, Tex. (8011 Cameron Rd., Austin 78754-3898): U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Encontre o texto completo da fonteAshworth, John B. Aquifers of Texas. [Austin, Tex.]: Texas Water Development Board, 1995.
Encontre o texto completo da fonteHaarhoff, Dorian. Aquifers and dust. Rivonia, Johannesburg: Justified Press, 1994.
Encontre o texto completo da fonteAucott, Walter R. Selected aquifer-test information for the Coastal Plain aquifers of South Carolina. Columbia, S.C: U.S. Dept. of the Interior, Geological Survey, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Aquifers"
Kukuric, Neno, Jac van der Gun, Slavek Vasak, Ognjen Bonacci, Irina Polshkova, Ofelia Tujchneider, Marcela Perez et al. "Transboundary Aquifers". In Transboundary Water Resources Management, 87–154. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636655.ch4.
Texto completo da fonteSindalovskiy, Leonid N. "Confined Aquifers". In Aquifer Test Solutions, 3–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43409-4_1.
Texto completo da fonteSindalovskiy, Leonid N. "Unconfined Aquifers". In Aquifer Test Solutions, 55–69. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43409-4_2.
Texto completo da fonteSindalovskiy, Leonid N. "Leaky Aquifers". In Aquifer Test Solutions, 71–114. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43409-4_3.
Texto completo da fonteAlsharhan, Abdulrahman S., e Zeinelabidin E. Rizk. "Gravel Aquifers". In Water Resources and Integrated Management of the United Arab Emirates, 335–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31684-6_11.
Texto completo da fonteAlsharhan, Abdulrahman S., e Zeinelabidin E. Rizk. "Limestone Aquifers". In Water Resources and Integrated Management of the United Arab Emirates, 281–309. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31684-6_9.
Texto completo da fonteNimmo, John, David A. Stonestrom e Richard W. Healy. "Aquifers: Recharge". In Fresh Water and Watersheds, 11–15. Second edition. | Boca Raton: CRC Press, [2020] | Revised edition of: Encyclopedia of natural resources. [2014].: CRC Press, 2020. http://dx.doi.org/10.1201/9780429441042-3.
Texto completo da fontePrice, Michael. "More about aquifers". In Introducing Groundwater, 70–97. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-1811-2_7.
Texto completo da fonteSindalovskiy, Leonid N. "Horizontally Heterogeneous Aquifers". In Aquifer Test Solutions, 115–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43409-4_4.
Texto completo da fonteDhiman, S. C. "Rejuvenation of Aquifers". In Springer Water, 187–204. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2700-1_10.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Aquifers"
Wang, Bo, Xiangzeng Wang, Yiming Chen, Quansheng Liang e Fanhua Zeng. "A Review-Dissolution and Mineralization Storage of CO2 Geological Storage in Saline Aquifers". In SPE Canadian Energy Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212790-ms.
Texto completo da fonteDayani, D. A., W. Wilopo e I. Azwartika. "GEOELECTRIC METHODS FOR GROUNDWATER EXPLORATION IN THE FOOD ESTATE AREA OF CENTRAL SUMBA REGENCY, EAST NUSA TENGGARA, INDONESIA". In 7th International Conference on Sustainable Built Environment. Universitas Islam Indonesia, 2023. http://dx.doi.org/10.20885/icsbe.vol2.art12.
Texto completo da fonteMuñoz Mazo, E. O., C. L. Delgadillo Aya, C. Espinosa Leon, A. Rueda Lizarazo, L. Toro Agudelo, A. M. Naranjo Pacheco, S. Arango Gómez, G. A. Nava Ardila, J. A. Villasmil Montero e E. J. Manrique Ventura. "Multilateral Wells to Control Water Inflow in Reservoir Connected to Active Underlying Aquifers: A Technical and Economic Analysis". In SPE Latin American and Caribbean Petroleum Engineering Conference. SPE, 2023. http://dx.doi.org/10.2118/213111-ms.
Texto completo da fonteRen, Bo, Jerry Jensen, Ian Duncan e Larry Lake. "Buoyant Flow of H2 Versus CO2 in Storage Aquifers". In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210327-ms.
Texto completo da fonteFerreira, J., M. C. Cunha, J. Vieira e J. P. Monteiro. "Optimized exploitation of aquifers: application to the Querença-Silves aquifer system". In WATER RESOURCES MANAGEMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/wrm090011.
Texto completo da fonteGrutters, Mark, Saloua Tiar, Avnish Kumar Mathur, Jawaher Mohamed AlDhanhani, Noora Aadel Mohammed Alblooshi, Weiliang Liu, Zhengzhong Li e Feng Zhai. "Unlocking Oil Production Through Debottlenecking Water Facilities by Implementation of a Novel PWRI Solution". In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216345-ms.
Texto completo da fonteMoridis, G. J., M. T. Reagan, T. Huang e T. A. Blasingame. "Analysis of the Performance of Horizontal Wells in the Long-Term CO2 Sequestration in Saline Aquifers". In SPE Europe Energy Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/220055-ms.
Texto completo da fontePearce, J. K., H. Hofmann, K. Baublys, S. D. Golding, K. Fifield, S. J. Herbert, Z. Bhebhe, I. Matthews, A. Moser e P. Hayes. "Methods for Differentiating Methane and Carbon Dioxide Sources in Aquifers Overlying Gas Reservoirs or Associated with CO2 Storage Sites". In Asia Pacific Unconventional Resources Symposium. SPE, 2023. http://dx.doi.org/10.2118/217301-ms.
Texto completo da fonteZhang, Zheming, e Ramesh Agarwal. "Numerical Simulation of Geological Carbon Sequestration in Saline Aquifers: Three Case Studies". In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18025.
Texto completo da fonteLongardner, Robert L., Anthony Visnesky e J. R. Strother. "Increasing the Capacity Factors of Base Load Generating Facilities by Storage of Electrical Energy in Aquifers as Compressed Air". In ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1988. http://dx.doi.org/10.1115/88-gt-283.
Texto completo da fonteRelatórios de organizações sobre o assunto "Aquifers"
Hanson, A. E. H., e J. I. LaFave. Manganese concentrations in Montana's groundwater. Montana Bureau of Mines and Geology, agosto de 2022. http://dx.doi.org/10.59691/aauy5468.
Texto completo da fonteFan, Mingyuan. Managed Aquifer Recharge in Mongolia: Policy Recommendations and Lessons Learned from Pilot Applications. Asian Development Bank, outubro de 2023. http://dx.doi.org/10.22617/brf230405-2.
Texto completo da fonteSlattery, S. R., P. J. Barnett, A. J. M. Pugin, D. R. Sharpe, D. Goodyear, R E Gerber, S. Holysh e S. Davies. Tunnel-channel complexes in the Zephyr area, Ontario: potential high-yield aquifers. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331410.
Texto completo da fonteTROJER, Mathias, e Stephan MATTHAI. CO2 migration in saline aquifers. Cogeo@oeaw-giscience, setembro de 2011. http://dx.doi.org/10.5242/iamg.2011.0102.
Texto completo da fonteHalliwell, D. R., S. Vanderburgh, B. D. Ricketts e L. E. Jackson. Unconfined aquifers, Fraser River Basin. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1993. http://dx.doi.org/10.4095/184136.
Texto completo da fonteJiang, Xiaowei, e John Cherry. History and Hydraulics of Flowing Wells. The Groundwater Project, 2023. http://dx.doi.org/10.21083/cpet1503.
Texto completo da fonteRussell, H. A. J. Archetypal aquifers and Canada 1 water. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329827.
Texto completo da fonteEdinberg, Sara C. Hydrogeologic framework of the upper Yellowstone River Valley, Park County, Montana. Montana Bureau of Mines and Geology, janeiro de 2024. http://dx.doi.org/10.59691/edpk6554.
Texto completo da fonteCarter, T. R., C. E. Logan, J K Clark, H. A. J. Russell, E. H. Priebe e S. Sun. A three-dimensional bedrock hydrostratigraphic model of southern Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331098.
Texto completo da fonteJensen, E. J. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site. Office of Scientific and Technical Information (OSTI), outubro de 1987. http://dx.doi.org/10.2172/5892330.
Texto completo da fonte