Artigos de revistas sobre o tema "Aqueous aerosols"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Aqueous aerosols".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Beaver, M. R., M. J. Elrod, R. M. Garland e M. A. Tolbert. "Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation". Atmospheric Chemistry and Physics Discussions 6, n.º 2 (28 de março de 2006): 2059–90. http://dx.doi.org/10.5194/acpd-6-2059-2006.
Texto completo da fonteBeaver, M. R., M. J. Elrod, R. M. Garland e M. A. Tolbert. "Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation". Atmospheric Chemistry and Physics 6, n.º 11 (4 de agosto de 2006): 3231–42. http://dx.doi.org/10.5194/acp-6-3231-2006.
Texto completo da fonteTsui, William G., Joseph L. Woo e V. Faye McNeill. "Impact of Aerosol-Cloud Cycling on Aqueous Secondary Organic Aerosol Formation". Atmosphere 10, n.º 11 (31 de outubro de 2019): 666. http://dx.doi.org/10.3390/atmos10110666.
Texto completo da fonteLiang, H., Z. M. Chen, D. Huang, Y. Zhao e Z. Y. Li. "Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO<sub>2</sub> radicals". Atmospheric Chemistry and Physics Discussions 13, n.º 6 (20 de junho de 2013): 16549–95. http://dx.doi.org/10.5194/acpd-13-16549-2013.
Texto completo da fonteLiang, H., Z. M. Chen, D. Huang, Y. Zhao e Z. Y. Li. "Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO<sub>2</sub> radicals". Atmospheric Chemistry and Physics 13, n.º 22 (20 de novembro de 2013): 11259–76. http://dx.doi.org/10.5194/acp-13-11259-2013.
Texto completo da fonteMorand, Gabriel, Pascale Chevallier, Cédric Guyon, Michael Tatoulian e Diego Mantovani. "In-Situ One-Step Direct Loading of Agents in Poly(acrylic acid) Coating Deposited by Aerosol-Assisted Open-Air Plasma". Polymers 13, n.º 12 (10 de junho de 2021): 1931. http://dx.doi.org/10.3390/polym13121931.
Texto completo da fonteWilson, T. W., B. J. Murray, R. Wagner, O. Möhler, H. Saathoff, M. Schnaiter, J. Skrotzki et al. "Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures". Atmospheric Chemistry and Physics Discussions 12, n.º 4 (10 de abril de 2012): 8979–9033. http://dx.doi.org/10.5194/acpd-12-8979-2012.
Texto completo da fonteGe, Xinlei, Qi Zhang, Yele Sun, Christopher R. Ruehl e Ari Setyan. "Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime". Environmental Chemistry 9, n.º 3 (2012): 221. http://dx.doi.org/10.1071/en11168.
Texto completo da fonteWoo, J. L., e V. F. McNeill. "simpleGAMMA – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)". Geoscientific Model Development Discussions 8, n.º 1 (22 de janeiro de 2015): 463–82. http://dx.doi.org/10.5194/gmdd-8-463-2015.
Texto completo da fonteLim, Y. B., e B. J. Turpin. "Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH". Atmospheric Chemistry and Physics 15, n.º 22 (19 de novembro de 2015): 12867–77. http://dx.doi.org/10.5194/acp-15-12867-2015.
Texto completo da fonteZobrist, B., C. Marcolli, D. A. Pedernera e T. Koop. "Do atmospheric aerosols form glasses?" Atmospheric Chemistry and Physics Discussions 8, n.º 3 (22 de maio de 2008): 9263–321. http://dx.doi.org/10.5194/acpd-8-9263-2008.
Texto completo da fonteZobrist, B., C. Marcolli, D. A. Pedernera e T. Koop. "Do atmospheric aerosols form glasses?" Atmospheric Chemistry and Physics 8, n.º 17 (3 de setembro de 2008): 5221–44. http://dx.doi.org/10.5194/acp-8-5221-2008.
Texto completo da fonteRosanka, Simon, Holger Tost, Rolf Sander, Patrick Jöckel, Astrid Kerkweg e Domenico Taraborrelli. "How non-equilibrium aerosol chemistry impacts particle acidity: the GMXe AERosol CHEMistry (GMXe–AERCHEM, v1.0) sub-submodel of MESSy". Geoscientific Model Development 17, n.º 7 (10 de abril de 2024): 2597–615. http://dx.doi.org/10.5194/gmd-17-2597-2024.
Texto completo da fonteLim, Y. B., e B. J. Turpin. "Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry". Atmospheric Chemistry and Physics Discussions 15, n.º 12 (25 de junho de 2015): 17367–96. http://dx.doi.org/10.5194/acpd-15-17367-2015.
Texto completo da fonteSukhapan, Jariya, e Peter Brimblecombe. "Ionic Surface Active Compounds in Atmospheric Aerosols". Scientific World JOURNAL 2 (2002): 1138–46. http://dx.doi.org/10.1100/tsw.2002.188.
Texto completo da fonteDiaz, Daniel, Alejandra Carreon e David W. Hahn. "Analysis of Copper and Lead in Aerosols with Laser-Induced Breakdown Spectroscopy". Photonics 11, n.º 12 (25 de novembro de 2024): 1112. http://dx.doi.org/10.3390/photonics11121112.
Texto completo da fonteWoo, J. L., e V. F. McNeill. "simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA)". Geoscientific Model Development 8, n.º 6 (22 de junho de 2015): 1821–29. http://dx.doi.org/10.5194/gmd-8-1821-2015.
Texto completo da fonteZhang, Yan-Lin, Kimitaka Kawamura, Ping Qing Fu, Suresh K. R. Boreddy, Tomomi Watanabe, Shiro Hatakeyama, Akinori Takami e Wei Wang. "Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China". Atmospheric Chemistry and Physics 16, n.º 10 (25 de maio de 2016): 6407–19. http://dx.doi.org/10.5194/acp-16-6407-2016.
Texto completo da fonteLi, Tao, Zhe Wang, Yaru Wang, Chen Wu, Yiheng Liang, Men Xia, Chuan Yu et al. "Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR". Atmospheric Chemistry and Physics 20, n.º 1 (13 de janeiro de 2020): 391–407. http://dx.doi.org/10.5194/acp-20-391-2020.
Texto completo da fonteLi, Z., A. N. Schwier, N. Sareen e V. F. McNeill. "Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products". Atmospheric Chemistry and Physics Discussions 11, n.º 7 (7 de julho de 2011): 19477–506. http://dx.doi.org/10.5194/acpd-11-19477-2011.
Texto completo da fonteChen, Weihua, Xuemei Wang, Jason Blake Cohen, Shengzhen Zhou, Zhisheng Zhang, Ming Chang e Chuen-Yu Chan. "Properties of aerosols and formation mechanisms over southern China during the monsoon season". Atmospheric Chemistry and Physics 16, n.º 20 (28 de outubro de 2016): 13271–89. http://dx.doi.org/10.5194/acp-16-13271-2016.
Texto completo da fonteLi, Z., A. N. Schwier, N. Sareen e V. F. McNeill. "Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products". Atmospheric Chemistry and Physics 11, n.º 22 (22 de novembro de 2011): 11617–29. http://dx.doi.org/10.5194/acp-11-11617-2011.
Texto completo da fonteLim, Yong Bin, Hwajin Kim, Jin Young Kim e Barbara J. Turpin. "Photochemical organonitrate formation in wet aerosols". Atmospheric Chemistry and Physics 16, n.º 19 (11 de outubro de 2016): 12631–47. http://dx.doi.org/10.5194/acp-16-12631-2016.
Texto completo da fonteWilson, T. W., B. J. Murray, R. Wagner, O. Möhler, H. Saathoff, M. Schnaiter, J. Skrotzki et al. "Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures". Atmospheric Chemistry and Physics 12, n.º 18 (25 de setembro de 2012): 8611–32. http://dx.doi.org/10.5194/acp-12-8611-2012.
Texto completo da fonteXu, Weiqi, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu e Yele Sun. "Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain". Atmospheric Chemistry and Physics 24, n.º 16 (28 de agosto de 2024): 9387–99. http://dx.doi.org/10.5194/acp-24-9387-2024.
Texto completo da fonteDaellenbach, Kaspar R., Jing Cai, Simo Hakala, Lubna Dada, Chao Yan, Wei Du, Lei Yao et al. "Substantial contribution of transported emissions to organic aerosol in Beijing". Nature Geoscience 17, n.º 8 (agosto de 2024): 747–54. http://dx.doi.org/10.1038/s41561-024-01493-3.
Texto completo da fonteBao, Zhier, Xinyi Zhang, Qing Li, Jiawei Zhou, Guangming Shi, Li Zhou, Fumo Yang et al. "Measurement report: Intensive biomass burning emissions and rapid nitrate formation drive severe haze formation in the Sichuan Basin, China – insights from aerosol mass spectrometry". Atmospheric Chemistry and Physics 23, n.º 2 (23 de janeiro de 2023): 1147–67. http://dx.doi.org/10.5194/acp-23-1147-2023.
Texto completo da fonteReid, Jonathan P., e Robert M. Sayer. "Chemistry in the Clouds: The Role of Aerosols in Atmospheric Chemistry". Science Progress 85, n.º 3 (agosto de 2002): 263–96. http://dx.doi.org/10.3184/003685002783238807a.
Texto completo da fonteLin, G., J. E. Penner, S. Sillman, D. Taraborrelli e J. Lelieveld. "Global mechanistic model of SOA formation: effects of different chemical mechanisms". Atmospheric Chemistry and Physics Discussions 11, n.º 9 (22 de setembro de 2011): 26347–413. http://dx.doi.org/10.5194/acpd-11-26347-2011.
Texto completo da fonteBharali, Chandrakala, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha e Baerbel Sinha. "Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study". Atmospheric Chemistry and Physics 24, n.º 11 (6 de junho de 2024): 6635–62. http://dx.doi.org/10.5194/acp-24-6635-2024.
Texto completo da fonteLim, Y. B., Y. Tan, M. J. Perri, S. P. Seitzinger e B. J. Turpin. "Aqueous chemistry and its role in secondary organic aerosol (SOA) formation". Atmospheric Chemistry and Physics 10, n.º 21 (10 de novembro de 2010): 10521–39. http://dx.doi.org/10.5194/acp-10-10521-2010.
Texto completo da fonteSkogerboe, R. K., e S. J. Freeland. "Effects of Solution Composition on the Physical Characteristics of Aerosols Produced by Nebulization". Applied Spectroscopy 39, n.º 6 (novembro de 1985): 925–30. http://dx.doi.org/10.1366/0003702854249637.
Texto completo da fonteLiggio, J., e S. M. Li. "A new source of oxygenated organic aerosol and oligomers". Atmospheric Chemistry and Physics 13, n.º 6 (15 de março de 2013): 2989–3002. http://dx.doi.org/10.5194/acp-13-2989-2013.
Texto completo da fonteTan, Y., Y. B. Lim, K. E. Altieri, S. P. Seitzinger e B. J. Turpin. "Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal". Atmospheric Chemistry and Physics 12, n.º 2 (18 de janeiro de 2012): 801–13. http://dx.doi.org/10.5194/acp-12-801-2012.
Texto completo da fonteMozurkewich, Michael, e Jack G. Calvert. "Reaction probability of N2O5on aqueous aerosols". Journal of Geophysical Research 93, n.º D12 (1988): 15889. http://dx.doi.org/10.1029/jd093id12p15889.
Texto completo da fonteWOOLMAN, P. S., C. T. COUTTS, D. R. MOLE, P. P. DENDY e T. W. HIGENBOTTAM. "Sites of deposition of aqueous aerosols". Nuclear Medicine Communications 10, n.º 3 (março de 1989): 171–80. http://dx.doi.org/10.1097/00006231-198903000-00009.
Texto completo da fonteClegg, S. L., e P. Brimblecombe. "Chemical modelling of aqueous atmospheric aerosols". Journal of Aerosol Science 23 (janeiro de 1992): 893–96. http://dx.doi.org/10.1016/0021-8502(92)90555-a.
Texto completo da fonteTritscher, T., A. P. Praplan, P. F. DeCarlo, B. Temime-Roussel, E. Quivet, N. Marchand, J. Dommen, U. Baltensperger e A. Monod. "Aqueous phase processing of secondary organic aerosols". Atmospheric Chemistry and Physics Discussions 11, n.º 7 (28 de julho de 2011): 21489–532. http://dx.doi.org/10.5194/acpd-11-21489-2011.
Texto completo da fonteQin, Chao, Yafeng Gou, Yuhang Wang, Yuhao Mao, Hong Liao, Qin'geng Wang e Mingjie Xie. "Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase". Atmospheric Chemistry and Physics 21, n.º 15 (13 de agosto de 2021): 12141–53. http://dx.doi.org/10.5194/acp-21-12141-2021.
Texto completo da fonteHao, Shangpeng, Chao Sun, Yuanpeng Zhang, Haitao Wang, Wenbo Zhao, Xiaolu Wang e Jinghai Li. "Adsorption of Gas-Phase Cyclohexanone on Atmospheric Water Films". Atmosphere 12, n.º 12 (20 de dezembro de 2021): 1705. http://dx.doi.org/10.3390/atmos12121705.
Texto completo da fonteSun, Yele, Wei Du, Pingqing Fu, Qingqing Wang, Jie Li, Xinlei Ge, Qi Zhang et al. "Primary and secondary aerosols in Beijing in winter: sources, variations and processes". Atmospheric Chemistry and Physics 16, n.º 13 (11 de julho de 2016): 8309–29. http://dx.doi.org/10.5194/acp-16-8309-2016.
Texto completo da fonteВолков, Р. С., С. В. Чванов e Д. Д. Андриянов. "Диагностика наличия твердых частиц в каплях водяного аэрозоля по их интерференционной картине". Письма в журнал технической физики 45, n.º 12 (2019): 22. http://dx.doi.org/10.21883/pjtf.2019.12.47913.17762.
Texto completo da fonteDang, Caroline, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki et al. "Biomass burning and marine aerosol processing over the southeast Atlantic Ocean: a TEM single-particle analysis". Atmospheric Chemistry and Physics 22, n.º 14 (21 de julho de 2022): 9389–412. http://dx.doi.org/10.5194/acp-22-9389-2022.
Texto completo da fonteZhang, Yunjiang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang et al. "Field characterization of the PM<sub>2.5</sub> Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China". Atmospheric Chemistry and Physics 17, n.º 23 (6 de dezembro de 2017): 14501–17. http://dx.doi.org/10.5194/acp-17-14501-2017.
Texto completo da fonteMcNeill, V. F., J. Patterson, G. M. Wolfe e J. A. Thornton. "The effect of varying levels of surfactant on the reactive uptake of N<sub>2</sub>O<sub>5</sub> to aqueous aerosol". Atmospheric Chemistry and Physics 6, n.º 6 (22 de maio de 2006): 1635–44. http://dx.doi.org/10.5194/acp-6-1635-2006.
Texto completo da fonteSchwier, A. N., G. A. Viglione, Z. Li e V. Faye McNeill. "Modeling the surface tension of complex, reactive organic–inorganic mixtures". Atmospheric Chemistry and Physics 13, n.º 21 (5 de novembro de 2013): 10721–32. http://dx.doi.org/10.5194/acp-13-10721-2013.
Texto completo da fonteTan, Y., Y. B. Lim, K. E. Altieri, S. P. Seitzinger e B. J. Turpin. "Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid". Atmospheric Chemistry and Physics Discussions 11, n.º 6 (28 de junho de 2011): 18319–47. http://dx.doi.org/10.5194/acpd-11-18319-2011.
Texto completo da fonteDonahue, N. M., W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams e S. N. Pandis. "Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set". Environmental Chemistry 10, n.º 3 (2013): 151. http://dx.doi.org/10.1071/en13022.
Texto completo da fonteKhalmanov, A. T., e N. Toshkuvatova. "Modern methods for identification of atoms, molecules, and aerosols in various objects". Industrial laboratory. Diagnostics of materials 89, n.º 6 (21 de junho de 2023): 23–34. http://dx.doi.org/10.26896/1028-6861-2023-89-6-23-34.
Texto completo da fontePavuluri, C. M., K. Kawamura, N. Mihalopoulos e T. Swaminathan. "Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls". Atmospheric Chemistry and Physics Discussions 15, n.º 1 (15 de janeiro de 2015): 1193–224. http://dx.doi.org/10.5194/acpd-15-1193-2015.
Texto completo da fonte