Artigos de revistas sobre o tema "Approximate identity neural networks"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Approximate identity neural networks".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Moon, Sunghwan. "ReLU Network with Bounded Width Is a Universal Approximator in View of an Approximate Identity". Applied Sciences 11, n.º 1 (4 de janeiro de 2021): 427. http://dx.doi.org/10.3390/app11010427.
Texto completo da fonteFunahashi, Ken-Ichi. "Approximate realization of identity mappings by three-layer neural networks". Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 73, n.º 11 (1990): 61–68. http://dx.doi.org/10.1002/ecjc.4430731107.
Texto completo da fonteZainuddin, Zarita, e Saeed Panahian Fard. "The Universal Approximation Capabilities of Cylindrical Approximate Identity Neural Networks". Arabian Journal for Science and Engineering 41, n.º 8 (4 de março de 2016): 3027–34. http://dx.doi.org/10.1007/s13369-016-2067-9.
Texto completo da fonteTurchetti, C., M. Conti, P. Crippa e S. Orcioni. "On the approximation of stochastic processes by approximate identity neural networks". IEEE Transactions on Neural Networks 9, n.º 6 (1998): 1069–85. http://dx.doi.org/10.1109/72.728353.
Texto completo da fonteConti, M., e C. Turchetti. "Approximate identity neural networks for analog synthesis of nonlinear dynamical systems". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 41, n.º 12 (1994): 841–58. http://dx.doi.org/10.1109/81.340846.
Texto completo da fonteFard, Saeed Panahian, e Zarita Zainuddin. "Almost everywhere approximation capabilities of double Mellin approximate identity neural networks". Soft Computing 20, n.º 11 (2 de julho de 2015): 4439–47. http://dx.doi.org/10.1007/s00500-015-1753-y.
Texto completo da fontePanahian Fard, Saeed, e Zarita Zainuddin. "The universal approximation capabilities of double 2 $$\pi $$ π -periodic approximate identity neural networks". Soft Computing 19, n.º 10 (6 de setembro de 2014): 2883–90. http://dx.doi.org/10.1007/s00500-014-1449-8.
Texto completo da fontePanahian Fard, Saeed, e Zarita Zainuddin. "Analyses for L p [a, b]-norm approximation capability of flexible approximate identity neural networks". Neural Computing and Applications 24, n.º 1 (8 de outubro de 2013): 45–50. http://dx.doi.org/10.1007/s00521-013-1493-9.
Texto completo da fonteDiMattina, Christopher, e Kechen Zhang. "How to Modify a Neural Network Gradually Without Changing Its Input-Output Functionality". Neural Computation 22, n.º 1 (janeiro de 2010): 1–47. http://dx.doi.org/10.1162/neco.2009.05-08-781.
Texto completo da fonteGermani, S., G. Tosti, P. Lubrano, S. Cutini, I. Mereu e A. Berretta. "Artificial Neural Network classification of 4FGL sources". Monthly Notices of the Royal Astronomical Society 505, n.º 4 (24 de junho de 2021): 5853–61. http://dx.doi.org/10.1093/mnras/stab1748.
Texto completo da fonteKaminski, P. C. "The Approximate Location of Damage through the Analysis of Natural Frequencies with Artificial Neural Networks". Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 209, n.º 2 (agosto de 1995): 117–23. http://dx.doi.org/10.1243/pime_proc_1995_209_238_02.
Texto completo da fonteKonstantaras, A., M. R. Varley, F. Vallianatos, G. Collins e P. Holifield. "A neuro-fuzzy approach to the reliable recognition of electric earthquake precursors". Natural Hazards and Earth System Sciences 4, n.º 5/6 (18 de outubro de 2004): 641–46. http://dx.doi.org/10.5194/nhess-4-641-2004.
Texto completo da fonteMaurya, Sunil Kumar, Xin Liu e Tsuyoshi Murata. "Graph Neural Networks for Fast Node Ranking Approximation". ACM Transactions on Knowledge Discovery from Data 15, n.º 5 (26 de junho de 2021): 1–32. http://dx.doi.org/10.1145/3446217.
Texto completo da fonteFUENTES, R., A. POZNYAK, I. CHAIREZ, M. FRANCO e T. POZNYAK. "CONTINUOUS NEURAL NETWORKS APPLIED TO IDENTIFY A CLASS OF UNCERTAIN PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS". International Journal of Modeling, Simulation, and Scientific Computing 01, n.º 04 (dezembro de 2010): 485–508. http://dx.doi.org/10.1142/s1793962310000304.
Texto completo da fonteYuan, Hao, Yongjun Chen, Xia Hu e Shuiwang Ji. "Interpreting Deep Models for Text Analysis via Optimization and Regularization Methods". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 5717–24. http://dx.doi.org/10.1609/aaai.v33i01.33015717.
Texto completo da fonteBartlett, Peter L., David P. Helmbold e Philip M. Long. "Gradient Descent with Identity Initialization Efficiently Learns Positive-Definite Linear Transformations by Deep Residual Networks". Neural Computation 31, n.º 3 (março de 2019): 477–502. http://dx.doi.org/10.1162/neco_a_01164.
Texto completo da fonteWu, Ga, Buser Say e Scott Sanner. "Scalable Planning with Deep Neural Network Learned Transition Models". Journal of Artificial Intelligence Research 68 (20 de julho de 2020): 571–606. http://dx.doi.org/10.1613/jair.1.11829.
Texto completo da fonteLi, Pengfei, Yan Li e Xiucheng Guo. "A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data". Computational Intelligence and Neuroscience 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/892132.
Texto completo da fonteJassem, Wiktor, e Waldemar Grygiel. "Off-line classification of Polish vowel spectra using artificial neural networks". Journal of the International Phonetic Association 34, n.º 1 (janeiro de 2004): 37–52. http://dx.doi.org/10.1017/s0025100304001537.
Texto completo da fonteSong, Chang-Yong. "A Study on Learning Parameters in Application of Radial Basis Function Neural Network Model to Rotor Blade Design Approximation". Applied Sciences 11, n.º 13 (1 de julho de 2021): 6133. http://dx.doi.org/10.3390/app11136133.
Texto completo da fonteMengall, G. "Fuzzy modelling for aircraft dynamics identification". Aeronautical Journal 105, n.º 1051 (setembro de 2001): 551–55. http://dx.doi.org/10.1017/s0001924000018029.
Texto completo da fonteChoi, Hwiyong, Haesang Yang, Seungjun Lee e Woojae Seong. "Classification of Inter-Floor Noise Type/Position Via Convolutional Neural Network-Based Supervised Learning". Applied Sciences 9, n.º 18 (7 de setembro de 2019): 3735. http://dx.doi.org/10.3390/app9183735.
Texto completo da fonteSilveira, Ana Claudia da, Luis Paulo Baldissera Schorr, Elisabete Vuaden, Jéssica Talheimer Aguiar, Tarik Cuchi e Giselli Castilho Moraes. "MODELAGEM DA ALTURA E DO INCREMENTO EM ÁREA TRANSVERSAL DE LOURO PARDO". Nativa 6, n.º 2 (26 de março de 2018): 191. http://dx.doi.org/10.31413/nativa.v6i2.4790.
Texto completo da fonteCintra, Renato J., Stefan Duffner, Christophe Garcia e Andre Leite. "Low-Complexity Approximate Convolutional Neural Networks". IEEE Transactions on Neural Networks and Learning Systems 29, n.º 12 (dezembro de 2018): 5981–92. http://dx.doi.org/10.1109/tnnls.2018.2815435.
Texto completo da fonteLlanas, B., e F. J. Sainz. "Constructive approximate interpolation by neural networks". Journal of Computational and Applied Mathematics 188, n.º 2 (abril de 2006): 283–308. http://dx.doi.org/10.1016/j.cam.2005.04.019.
Texto completo da fonteTAKAGI, Hideyuki, Toshiyuki KOUDA e Yoshihiro KOJIMA. "Neural-networks designed on Approximate Reasoning Architecture". Journal of Japan Society for Fuzzy Theory and Systems 3, n.º 1 (1991): 133–41. http://dx.doi.org/10.3156/jfuzzy.3.1_133.
Texto completo da fonteShen, Zuliang, Ho Chung Lui e Liya Ding. "Approximate case-based reasoning on neural networks". International Journal of Approximate Reasoning 10, n.º 1 (janeiro de 1994): 75–98. http://dx.doi.org/10.1016/0888-613x(94)90010-8.
Texto completo da fonteRobinson, Haakon. "Approximate Piecewise Affine Decomposition of Neural Networks". IFAC-PapersOnLine 54, n.º 7 (2021): 541–46. http://dx.doi.org/10.1016/j.ifacol.2021.08.416.
Texto completo da fonteShyamalagowri, M., e R. Rajeswari. "Neural Network Predictive Controller Based Nonlinearity Identification Case Study: Nonlinear Process Reactor - CSTR". Advanced Materials Research 984-985 (julho de 2014): 1326–34. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.1326.
Texto completo da fonteXu, Xiangrui, Yaqin Li e Cao Yuan. "“Identity Bracelets” for Deep Neural Networks". IEEE Access 8 (2020): 102065–74. http://dx.doi.org/10.1109/access.2020.2998784.
Texto completo da fonteMasegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen e Antonio Salmerón. "Probabilistic Models with Deep Neural Networks". Entropy 23, n.º 1 (18 de janeiro de 2021): 117. http://dx.doi.org/10.3390/e23010117.
Texto completo da fonteStinchcombe, Maxwell B. "Precision and Approximate Flatness in Artificial Neural Networks". Neural Computation 7, n.º 5 (setembro de 1995): 1021–39. http://dx.doi.org/10.1162/neco.1995.7.5.1021.
Texto completo da fonteNarendra, K. S., e S. Mukhopadhyay. "Adaptive control using neural networks and approximate models". IEEE Transactions on Neural Networks 8, n.º 3 (maio de 1997): 475–85. http://dx.doi.org/10.1109/72.572089.
Texto completo da fonteLotrič, Uroš, e Patricio Bulić. "Applicability of approximate multipliers in hardware neural networks". Neurocomputing 96 (novembro de 2012): 57–65. http://dx.doi.org/10.1016/j.neucom.2011.09.039.
Texto completo da fonteGerber, B. S., T. G. Tape, R. S. Wigton e P. S. Heckerling. "Entering the Black Box of Neural Networks". Methods of Information in Medicine 42, n.º 03 (2003): 287–96. http://dx.doi.org/10.1055/s-0038-1634363.
Texto completo da fonteMohaghegh, Shahab, Khalid Mohamad, Popa Andrei, Ameri Sam e Dan Wood. "Performance Drivers in Restimulation of Gas-Storage Wells". SPE Reservoir Evaluation & Engineering 4, n.º 06 (1 de dezembro de 2001): 536–42. http://dx.doi.org/10.2118/74715-pa.
Texto completo da fonteGunhan, Atilla E., László P. Csernai e Jørgen Randrup. "UNSUPERVISED COMPETITIVE LEARNING IN NEURAL NETWORKS". International Journal of Neural Systems 01, n.º 02 (janeiro de 1989): 177–86. http://dx.doi.org/10.1142/s0129065789000086.
Texto completo da fonteJonathan Lee* e Hsiao-Fan Wang**. "Selected Papers from IFSA'99". Journal of Advanced Computational Intelligence and Intelligent Informatics 5, n.º 3 (20 de maio de 2001): 127. http://dx.doi.org/10.20965/jaciii.2001.p0127.
Texto completo da fonteMoran, Maira, Marcelo Faria, Gilson Giraldi, Luciana Bastos, Larissa Oliveira e Aura Conci. "Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks". Sensors 21, n.º 15 (31 de julho de 2021): 5192. http://dx.doi.org/10.3390/s21155192.
Texto completo da fonteSutcliffe, P. R. "Substorm onset identification using neural networks and Pi2 pulsations". Annales Geophysicae 15, n.º 10 (31 de outubro de 1997): 1257–64. http://dx.doi.org/10.1007/s00585-997-1257-x.
Texto completo da fonteYang, Xiaofeng, Tielong Shen e Katsutoshi Tamura. "Approximate solution of Hamilton-Jacobi inequality by neural networks". Applied Mathematics and Computation 84, n.º 1 (junho de 1997): 49–64. http://dx.doi.org/10.1016/s0096-3003(96)00053-7.
Texto completo da fonteKim, Min Soo, Alberto A. Del Barrio, Leonardo Tavares Oliveira, Roman Hermida e Nader Bagherzadeh. "Efficient Mitchell’s Approximate Log Multipliers for Convolutional Neural Networks". IEEE Transactions on Computers 68, n.º 5 (1 de maio de 2019): 660–75. http://dx.doi.org/10.1109/tc.2018.2880742.
Texto completo da fontevan der Baan, Mirko, e Christian Jutten. "Neural networks in geophysical applications". GEOPHYSICS 65, n.º 4 (julho de 2000): 1032–47. http://dx.doi.org/10.1190/1.1444797.
Texto completo da fonteTian, Hao, e Yue Qing Yu. "Neural Network Trajectory Tracking Control of Compliant Parallel Robot". Applied Mechanics and Materials 799-800 (outubro de 2015): 1069–73. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.1069.
Texto completo da fonteVanchurin, Vitaly. "The World as a Neural Network". Entropy 22, n.º 11 (26 de outubro de 2020): 1210. http://dx.doi.org/10.3390/e22111210.
Texto completo da fonteBhaya , Eman Samir, e Zahraa Mahmoud Fadel. "Nearly Exponential Neural Networks Approximation in Lp Spaces". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 26, n.º 1 (20 de dezembro de 2017): 103–13. http://dx.doi.org/10.29196/jub.v26i1.359.
Texto completo da fonteDuggal, Ashmeet Kaur, e Meenu Dave Dr. "INTELLIGENT IDENTITY AND ACCESS MANAGEMENT USING NEURAL NETWORKS". Indian Journal of Computer Science and Engineering 12, n.º 1 (20 de fevereiro de 2021): 47–56. http://dx.doi.org/10.21817/indjcse/2021/v12i1/211201154.
Texto completo da fonteLi, Xiangyu, Chunhua Yuan e Bonan Shan. "System Identification of Neural Signal Transmission Based on Backpropagation Neural Network". Mathematical Problems in Engineering 2020 (12 de agosto de 2020): 1–8. http://dx.doi.org/10.1155/2020/9652678.
Texto completo da fonteAbboud, Ralph, Ismail Ceylan e Thomas Lukasiewicz. "Learning to Reason: Leveraging Neural Networks for Approximate DNF Counting". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3097–104. http://dx.doi.org/10.1609/aaai.v34i04.5705.
Texto completo da fonteCao, Feilong, Shaobo Lin e Zongben Xu. "Constructive approximate interpolation by neural networks in the metric space". Mathematical and Computer Modelling 52, n.º 9-10 (novembro de 2010): 1674–81. http://dx.doi.org/10.1016/j.mcm.2010.06.035.
Texto completo da fonte