Literatura científica selecionada sobre o tema "Apprentissage par instances multiples"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Apprentissage par instances multiples".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Apprentissage par instances multiples"
Fairet, Caroline, e Muriel Grosbois. "Dynamique(s) des espaces et apprentissage de l’anglais". Éducation Permanente N° 237, n.º 4 (29 de dezembro de 2023): 79–92. http://dx.doi.org/10.3917/edpe.237.0079.
Texto completo da fonteGABARA, Abdulnasser. "Intelligences multiples dans l’enseignement des langues étrangères aux universités yéménites". مجلة العلوم التربوية و الدراسات الإنسانية 1, n.º 6 (17 de novembro de 2019): 1–18. http://dx.doi.org/10.55074/hesj.v1i6.63.
Texto completo da fonteDuroisin, Natacha, e Nancy Goyette. "Le défi des enseignants belges francophones dans l’élaboration de leurs séquences d’enseignement-apprentissage : prise en compte des théories sur l’autodétermination et le bien-être au travail". Phronesis 7, n.º 4 (19 de fevereiro de 2019): 91–105. http://dx.doi.org/10.7202/1056322ar.
Texto completo da fonteDe la Broise, Patrice. "La lutte pour la reconnaissance ?" Revue Communication & professionnalisation, n.º 1 (5 de maio de 2013): 33–50. http://dx.doi.org/10.14428/rcompro.vi1.233.
Texto completo da fonteBreithaupt, Sandrine, e Anne Clerc Georgy. "Que révèlent les situations d’évaluation de la posture en formation des futurs enseignants ?" Mesure et évaluation en éducation 40, n.º 2 (23 de fevereiro de 2018): 57–90. http://dx.doi.org/10.7202/1043568ar.
Texto completo da fonteLabbé, Grégoire. "Sur quelles bases enseigner l’intercompréhension entre les langues slaves de l’ouest et du sud-ouest?" Journal for Foreign Languages 9, n.º 1 (28 de dezembro de 2017): 191–200. http://dx.doi.org/10.4312/vestnik.9.191-200.
Texto completo da fonteGonzález-Posada Flores, Fernando. "Une approche simplifiée de l´apprentissage par projet dans le master sciences et numérique pour la santé". J3eA 21 (2022): 2041. http://dx.doi.org/10.1051/j3ea/20222041.
Texto completo da fonteNgomayé, Esther Solange. "La ronde des poètes ou la lutte de la multitude pour l’autonomie du champ littéraire camerounais". Démo vs Cratie : la question du pouvoir de la multitude 33, n.º 1-2-spécial (17 de janeiro de 2018): 37–56. http://dx.doi.org/10.7202/1042874ar.
Texto completo da fonteFrancis, Véronique. "Premiers pas, premières pages – Sur quelques objets à lire et à écrire au cours de la petite enfance". Diversité 170, n.º 1 (2012): 106–11. http://dx.doi.org/10.3406/diver.2012.3643.
Texto completo da fonteLe Tellier, Julien. "Regards croisés sur les politiques d’habitat social au Maghreb : Algérie, Maroc, Tunisie". I Politiques urbaines et du logement, n.º 63 (22 de julho de 2010): 55–65. http://dx.doi.org/10.7202/044149ar.
Texto completo da fonteTeses / dissertações sobre o assunto "Apprentissage par instances multiples"
Lerousseau, Marvin. "Weakly Supervised Segmentation and Context-Aware Classification in Computational Pathology". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG015.
Texto completo da fonteAnatomic pathology is the medical discipline responsible for the diagnosis and characterization of diseases through the macroscopic, microscopic, molecular and immunologic inspection of tissues. Modern technologies have made possible the digitization of tissue glass slides into whole slide images, which can themselves be processed by artificial intelligence to enhance the capabilities of pathologists. This thesis presented several novel and powerful approaches that tackle pan-cancer segmentation and classification of whole slide images. Learning segmentation models for whole slide images is challenged by an annotation bottleneck which arises from (i) a shortage of pathologists, (ii) an intense cumbersomeness and boring annotation process, and (iii) major inter-annotators discrepancy. My first line of work tackled pan-cancer tumor segmentation by designing two novel state-of-the-art weakly supervised approaches that exploit slide-level annotations that are fast and easy to obtain. In particular, my second segmentation contribution was a generic and highly powerful algorithm that leverages percentage annotations on a slide basis, without needing any pixelbased annotation. Extensive large-scale experiments showed the superiority of my approaches over weakly supervised and supervised methods for pan-cancer tumor segmentation on a dataset of more than 15,000 unfiltered and extremely challenging whole slide images from snap-frozen tissues. My results indicated the robustness of my approaches to noise and systemic biases in annotations. Digital slides are difficult to classify due to their colossal sizes, which range from millions of pixels to billions of pixels, often weighing more than 500 megabytes. The straightforward use of traditional computer vision is therefore not possible, prompting the use of multiple instance learning, a machine learning paradigm consisting in assimilating a whole slide image as a set of patches uniformly sampled from it. Up to my works, the greater majority of multiple instance learning approaches considered patches as independently and identically sampled, i.e. discarded the spatial relationship of patches extracted from a whole slide image. Some approaches exploited such spatial interconnection by leveraging graph-based models, although the true domain of whole slide images is specifically the image domain which is more suited with convolutional neural networks. I designed a highly powerful and modular multiple instance learning framework that leverages the spatial relationship of patches extracted from a whole slide image by building a sparse map from the patches embeddings, which is then further processed into a whole slide image embedding by a sparse-input convolutional neural network, before being classified by a generic classifier model. My framework essentially bridges the gap between multiple instance learning, and fully convolutional classification. I performed extensive experiments on three whole slide image classification tasks, including the golden task of cancer pathologist of subtyping tumors, on a dataset of more than 20,000 whole slide images from public data. Results highlighted the superiority of my approach over all other widespread multiple instance learning methods. Furthermore, while my experiments only investigated my approach with sparse-input convolutional neural networks with two convolutional layers, the results showed that my framework works better as the number of parameters increases, suggesting that more sophisticated convolutional neural networks can easily obtain superior results
Guillaumin, Matthieu. "Données multimodales pour l'analyse d'image". Phd thesis, Grenoble, 2010. http://tel.archives-ouvertes.fr/tel-00522278/en/.
Texto completo da fonteGuillaumin, Matthieu. "Données multimodales pour l'analyse d'image". Phd thesis, Grenoble, 2010. http://www.theses.fr/2010GRENM048.
Texto completo da fonteThis dissertation delves into the use of textual metadata for image understanding. We seek to exploit this additional textual information as weak supervision to improve the learning of recognition models. There is a recent and growing interest for methods that exploit such data because they can potentially alleviate the need for manual annotation, which is a costly and time-consuming process. We focus on two types of visual data with associated textual information. First, we exploit news images that come with descriptive captions to address several face related tasks, including face verification, which is the task of deciding whether two images depict the same individual, and face naming, the problem of associating faces in a data set to their correct names. Second, we consider data consisting of images with user tags. We explore models for automatically predicting tags for new images, i. E. Image auto-annotation, which can also used for keyword-based image search. We also study a multimodal semi-supervised learning scenario for image categorisation. In this setting, the tags are assumed to be present in both labelled and unlabelled training data, while they are absent from the test data. Our work builds on the observation that most of these tasks can be solved if perfectly adequate similarity measures are used. We therefore introduce novel approaches that involve metric learning, nearest neighbour models and graph-based methods to learn, from the visual and textual data, task-specific similarities. For faces, our similarities focus on the identities of the individuals while, for images, they address more general semantic visual concepts. Experimentally, our approaches achieve state-of-the-art results on several standard and challenging data sets. On both types of data, we clearly show that learning using additional textual information improves the performance of visual recognition systems
Zribi, Abir. "Apprentissage par noyaux multiples : application à la classification automatique des images biomédicales microscopiques". Thesis, Rouen, INSA, 2016. http://www.theses.fr/2016ISAM0001.
Texto completo da fonteThis thesis arises in the context of computer aided analysis for subcellular protein localization in microscopic images. The aim is the establishment of an automatic classification system allowing to identify the cellular compartment in which a protein of interest exerts its biological activity. In order to overcome the difficulties in attempting to discern the cellular compartments in microscopic images, the existing state-of-art systems use several descriptors to train an ensemble of classifiers. In this thesis, we propose a different classification scheme wich better cope with the requirement of genericity and flexibility to treat various image datasets. Aiming to provide an efficient image characterization of microscopic images, a new feature system combining local, frequency-domain, global, and region-based features is proposed. Then, we formulate the problem of heterogeneous feature fusion as a kernel selection problem. Using multiple kernel learning, the problems of optimal feature sets selection and classifier training are simultaneously resolved. The proposed combination scheme leads to a simple and a generic framework capable of providing a high performance for microscopy image classification. Extensive experiments were carried out using widely-used and best known datasets. When compared with the state-of-the-art systems, our framework is more generic and outperforms other classification systems. To further expand our study on multiple kernel learning, we introduce a new formalism for learning with multiple kernels performed in two steps. This contribution consists in proposing three regularized terms with in the minimization of kernels weights problem, formulated as a classification problem using Separators with Vast Margin on the space of pairs of data. The first term ensures that kernels selection leads to a sparse representation. While the second and the third terms introduce the concept of kernels similarity by using a correlation measure. Experiments on various biomedical image datasets show a promising performance of our method compared to states of art methods
Gaudel, Romaric. "Paramètres d'ordre et sélection de modèles en apprentissage : caractérisation des modèles et sélection d'attributs". Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00549090.
Texto completo da fonteDuminy, Nicolas. "Découverte et exploitation de la hiérarchie des tâches pour apprendre des séquences de politiques motrices par un robot stratégique et interactif". Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS513/document.
Texto completo da fonteEfforts are made to make robots operate more and more in complex unbounded ever-changing environments, alongside or even in cooperation with humans. Their tasks can be of various kinds, can be hierarchically organized, and can also change dramatically or be created, after the robot deployment. Therefore, those robots must be able to continuously learn new skills, in an unbounded, stochastic and high-dimensional space. Such environment is impossible to be completely explored during the robot's lifetime, therefore it must be able to organize its exploration and decide what is more important to learn and how to learn it, using metrics such as intrinsic motivation guiding it towards the most interesting tasks and strategies. This becomes an even bigger challenge, when the robot is faced with tasks of various complexity, some requiring a simple action to be achieved, other needing a sequence of actions to be performed. We developed a strategic intrinsically motivated learning architecture, called Socially Guided Intrinsic Motivation for Sequences of Actions through Hierarchical Tasks (SGIM-SAHT), able to learn the mapping between its actions and their outcomes on the environment. This architecture, is capable to organize its learning process, by deciding which outcome to focus on, and which strategy to use among autonomous and interactive ones. For learning hierarchical set of tasks, the architecture was provided with a framework, called procedure framework, to discover and exploit the task hierarchy and combine skills together in a task-oriented way. The use of sequences of actions enabled such a learner to adapt the complexity of its actions to that of the task at hand
Pouilly-Cathelain, Maxime. "Synthèse de correcteurs s’adaptant à des critères multiples de haut niveau par la commande prédictive et les réseaux de neurones". Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG019.
Texto completo da fonteThis PhD thesis deals with the control of nonlinear systems subject to nondifferentiable or nonconvex constraints. The objective is to design a control law considering any type of constraints that can be online evaluated.To achieve this goal, model predictive control has been used in addition to barrier functions included in the cost function. A gradient-free optimization algorithm has been used to solve this optimization problem. Besides, a cost function formulation has been proposed to ensure stability and robustness against disturbances for linear systems. The proof of stability is based on invariant sets and the Lyapunov theory.In the case of nonlinear systems, dynamic neural networks have been used as a predictor for model predictive control. Machine learning algorithms and the nonlinear observers required for the use of neural networks have been studied. Finally, our study has focused on improving neural network prediction in the presence of disturbances.The synthesis method presented in this work has been applied to obstacle avoidance by an autonomous vehicle
Sanabria, Rosas Laura Melissa. "Détection et caractérisation des moments saillants pour les résumés automatiques". Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4104.
Texto completo da fonteVideo content is present in an ever-increasing number of fields, both scientific and commercial. Sports, particularly soccer, is one of the industries that has invested the most in the field of video analytics, due to the massive popularity of the game. Although several state-of-the-art methods rely on handcrafted heuristics to generate summaries of soccer games, they have proven that multiple modalities help detect the best actions of the game. On the other hand, the field of general-purpose video summarization has advanced rapidly, offering several deep learning approaches. However, many of them are based on properties that are not feasible for sports videos. Video content has been for many years the main source for automatic tasks in soccer but the data that registers all the events happening on the field have become lately very important in sports analytics, since these event data provide richer information and requires less processing. Considering that in automatic sports summarization, the goal is not only to show the most important actions of the game, but also to evoke as much emotion as those evoked by human editors, we propose a method to generate the summary of a soccer match video exploiting the event metadata of the entire match and the content broadcast on TV. We have designed an architecture, introducing (1) a Multiple Instance Learning method that takes into account the sequential dependency among events, (2) a hierarchical multimodal attention layer that grasps the importance of each event in an action and (3) a method to automatically generate multiple summaries of a soccer match by sampling from a ranking distribution, providing multiple candidate summaries which are similar enough but with relevant variability to provide different options to the final user.We also introduced solutions to some additional challenges in the field of sports summarization. Based on the internal signals of an attention model that uses event data as input, we proposed a method to analyze the interpretability of our model through a graphical representation of actions where the x-axis of the graph represents the sequence of events, and the y-axis is the weight value learned by the attention layer. This new representation provides a new tool for the editor containing meaningful information to decide whether an action is important. We also proposed the use of keyword spotting and boosting techniques to detect every time a player is mentioned by the commentators as a solution for the missing event data
Hajri, Salah Eddine. "L’amélioration des performances des systèmes sans fil 5G par groupements adaptatifs des utilisateurs". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC029/document.
Texto completo da fonte5G is envisioned to tackle, in addition to a considerable increase in traffic volume, the task of connecting billions of devices with heterogeneous service requirements. In order to address the challenges of 5G, we advocate a more efficient use of the available information, with more service and user awareness, and an expansion of the RAN intelligence. In particular, we focus on two key enablers of 5G, namely massive MIMO and proactive caching. In the third chapter, we focus on addressing the bottleneck of CSI acquisition in TDD Massive MIMO. In order to do so, we propose novel spatial grouping schemes such that, in each group, maximum coverage of the signal’s spatial basis with minimum overlapping between user spatial signatures is achieved. The latter enables to increase connection density while improving spectral efficiency. TDD Massive MIMO is also the focus of the fourth chapter. Therein, based on the different rates of wireless channels aging, CSI estimation periodicity is exploited as an additional DoF. We do so by proposing a dynamic adaptation of the TDD frame based on the heterogeneous channels coherence times. The Massive MIMO BSs are enabled to learn the best uplink training policy for long periods. Since channel changes result primarily from device mobility, location awareness is also included in the learning process. The resulting planning problem was modeled as a two-time scale POMDP and efficient low complexity algorithms were provided to solve it. The fifth chapter focuses on proactive caching. We focus on improving the energy efficiency of cache-enabled networks by exploiting the correlation in traffic patterns in addition to the spatial repartition of requests. We propose a framework that strikes the optimal trade-off between complexity and truthfulness in user behavior modeling through adaptive content popularity-based clustering. It also simplifies the problem of content placement, which results in a rapidly adaptable and energy efficient content allocation framework
Grard, Matthieu. "Generic instance segmentation for object-oriented bin-picking". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC015.
Texto completo da fonteReferred to as robotic random bin-picking, a fast-expanding industrial task consists in robotizing the unloading of many object instances piled up in bulk, one at a time, for further processing such as kitting or part assembling. However, explicit object models are not always available in many bin-picking applications, especially in the food and automotive industries. Furthermore, object instances are often subject to intra-class variations, for example due to elastic deformations.Object pose estimation techniques, which require an explicit model and assume rigid transformations, are therefore not suitable in such contexts. The alternative approach, which consists in detecting grasps without an explicit notion of object, proves hardly efficient when the object geometry makes bulk instances prone to occlusion and entanglement. These approaches also typically rely on a multi-view scene reconstruction that may be unfeasible due to transparent and shiny textures, or that reduces critically the time frame for image processing in high-throughput robotic applications.In collaboration with Siléane, a French company in industrial robotics, we thus aim at developing a learning-based solution for localizing the most affordable instance of a pile from a single image, in open loop, without explicit object models. In the context of industrial bin-picking, our contribution is two-fold.First, we propose a novel fully convolutional network (FCN) for jointly delineating instances and inferring the spatial layout at their boundaries. Indeed, the state-of-the-art methods for such a task rely on two independent streams for boundaries and occlusions respectively, whereas occlusions often cause boundaries. Specifically, the mainstream approach, which consists in isolating instances in boxes before detecting boundaries and occlusions, fails in bin-picking scenarios as a rectangle region often includes several instances. By contrast, our box proposal-free architecture recovers fine instance boundaries, augmented with their occluding side, from a unified scene representation. As a result, the proposed network outperforms the two-stream baselines on synthetic data and public real-world datasets.Second, as FCNs require large training datasets that are not available in bin-picking applications, we propose a simulation-based pipeline for generating training images using physics and rendering engines. Specifically, piles of instances are simulated and rendered with their ground-truth annotations from sets of texture images and meshes to which multiple random deformations are applied. We show that the proposed synthetic data is plausible for real-world applications in the sense that it enables the learning of deep representations transferable to real data. Through extensive experiments on a real-world robotic setup, our synthetically trained network outperforms the industrial baseline while achieving real-time performances. The proposed approach thus establishes a new baseline for model-free object-oriented bin-picking
Capítulos de livros sobre o assunto "Apprentissage par instances multiples"
SZITA, Szilvia. "Au-delà du glossaire". In Dictionnaires et apprentissage des langues, 65–78. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4504.
Texto completo da fonte