Artigos de revistas sobre o tema "Aperture antennas"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Aperture antennas".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Prof. Romi Morzelona. "Evaluation and Examination of Aperture Oriented Antennas". International Journal of New Practices in Management and Engineering 6, n.º 01 (31 de março de 2017): 01–07. http://dx.doi.org/10.17762/ijnpme.v6i01.49.
Texto completo da fonteMusa, Doaa Salim Mohammed, Ramazan Daşbaşı e Burak Polat. "Evaluation of Radiation Performances of Various Aperture and Horn Antennas over Sea Surface". European Journal of Research and Development 2, n.º 2 (7 de junho de 2022): 429–44. http://dx.doi.org/10.56038/ejrnd.v2i2.89.
Texto completo da fontePang, Ke, Yongjun Xie, Legen Dai e Peiyu Wu. "Design of Ultra High Aperture Efficiency Surface Wave Antenna Array Based on the Three-Dimensional Aperture Principle". Electronics 11, n.º 21 (28 de outubro de 2022): 3515. http://dx.doi.org/10.3390/electronics11213515.
Texto completo da fonteQu, Bingyue, Sen Yan, Anxue Zhang, Yongqiang Pang e Zhuo Xu. "Shared-aperture antennas based on mode modulation of a patch antenna and spoof surface plasmon polaritons". Journal of Physics D: Applied Physics 55, n.º 4 (25 de outubro de 2021): 045002. http://dx.doi.org/10.1088/1361-6463/ac2f69.
Texto completo da fonteWang, Congsi, Haihua Li, Kang Ying, Qian Xu, Na Wang, Baoyan Duan, Wei Gao, Lan Xiao e Yuhu Duan. "Active Surface Compensation for Large Radio Telescope Antennas". International Journal of Antennas and Propagation 2018 (2018): 1–17. http://dx.doi.org/10.1155/2018/3903412.
Texto completo da fonteDing, Kaicheng, Lei Sun e Daqun Yu. "A Dual-Band Shared-Aperture Antenna Array Design". Journal of Physics: Conference Series 2419, n.º 1 (1 de janeiro de 2023): 012034. http://dx.doi.org/10.1088/1742-6596/2419/1/012034.
Texto completo da fonteWashington, Gregory. "Smart aperture antennas". Smart Materials and Structures 5, n.º 6 (1 de dezembro de 1996): 801–5. http://dx.doi.org/10.1088/0964-1726/5/6/010.
Texto completo da fonteXue, Yulong, Qihao Zhang, Yangming Ren, Yufang Lei, Xiaochen Sun e Lingxuan Zhang. "Two-dimensional single-lobe Si photonic optical phased array with minimal antennas using a non-uniform large spacing array design". Applied Optics 61, n.º 24 (15 de agosto de 2022): 7158. http://dx.doi.org/10.1364/ao.463542.
Texto completo da fonteIlnitskyi, Ludvig, Leonid Sibruk e Inna Mykhalchuk. "Considerations for Far-field Antennas Test". Electronics and Control Systems 2, n.º 68 (22 de novembro de 2021): 56–61. http://dx.doi.org/10.18372/1990-5548.68.16092.
Texto completo da fonteGu, Chunwang, Hao Liu e Min Yi. "Lightweight Fan-Beam Microstrip Grid Antenna for Airborne Microwave Interferometric Radiometer Applications". Micromachines 14, n.º 1 (15 de janeiro de 2023): 228. http://dx.doi.org/10.3390/mi14010228.
Texto completo da fonteMoheb, H., J. Shaker e L. Shafai. "Numerical and experimental investigation of cavity-backed arbitrary slot antennas". Canadian Journal of Physics 74, n.º 3-4 (1 de março de 1996): 122–31. http://dx.doi.org/10.1139/p96-019.
Texto completo da fonteTeniou, Mounir, Helene Roussel, Mohammed Serhir, Nicolas Capet, Gerard-Pascal Piau e Massimiliano Casaletti. "Tensorial metasurface antennas radiating polarized beams based on aperture field implementation". International Journal of Microwave and Wireless Technologies 10, n.º 2 (23 de novembro de 2017): 161–68. http://dx.doi.org/10.1017/s1759078717001222.
Texto completo da fonteReichthalhammer, T., e E. Biebl. "Motion compensation of short-range, wide-beam synthetic aperture radar". Advances in Radio Science 9 (29 de julho de 2011): 61–66. http://dx.doi.org/10.5194/ars-9-61-2011.
Texto completo da fonteIsakov, V. N., e V. S. Lankina. "Modeling of the electromagnetic field of radiating aperture". Russian Technological Journal 9, n.º 4 (26 de agosto de 2021): 56–67. http://dx.doi.org/10.32362/2500-316x-2021-9-4-56-67.
Texto completo da fonteOhnimus, Florian, Uwe Maaß, Gerhard Fotheringham, Brian Curran, Ivan Ndip, Thomas Fritzsch, Jürgen Wolf, Stephan Guttowski e Klaus-Dieter Lang. "Design and Comparison of 24 GHz Patch Antennas on Glass Substrates for Compact Wireless Sensor Nodes". International Journal of Microwave Science and Technology 2010 (7 de fevereiro de 2010): 1–9. http://dx.doi.org/10.1155/2010/535307.
Texto completo da fonteLukin, Konstantin, Anatoliy Mogila, Pavlo Vyplavin, Gaspare Galati e Gabriele Pavan. "Novel concepts for surface movement radar design". International Journal of Microwave and Wireless Technologies 1, n.º 3 (junho de 2009): 163–69. http://dx.doi.org/10.1017/s1759078709000233.
Texto completo da fonteKumar, Girish, e R. K. Kotapati. "Aperture Coupled Microstrip Antennas". IETE Technical Review 16, n.º 1 (janeiro de 1999): 85–88. http://dx.doi.org/10.1080/02564602.1999.11416808.
Texto completo da fonteKim, Eunhee, Ilkyu Kim e Wansik Kim. "Non-Uniform MIMO Array Design for Radar Systems Using Multi-Channel Transceivers". Remote Sensing 15, n.º 1 (23 de dezembro de 2022): 78. http://dx.doi.org/10.3390/rs15010078.
Texto completo da fonteKarami, Farzad, Halim Boutayeb, Ali Amn-e-Elahi, Alireza Ghayekhloo e Larbi Talbi. "Developing Broadband Microstrip Patch Antennas Fed by SIW Feeding Network for Spatially Low Cross-Polarization Situation". Sensors 22, n.º 9 (24 de abril de 2022): 3268. http://dx.doi.org/10.3390/s22093268.
Texto completo da fonteKarami, Farzad, Halim Boutayeb, Ali Amn-e-Elahi, Alireza Ghayekhloo e Larbi Talbi. "Developing Broadband Microstrip Patch Antennas Fed by SIW Feeding Network for Spatially Low Cross-Polarization Situation". Sensors 22, n.º 9 (24 de abril de 2022): 3268. http://dx.doi.org/10.3390/s22093268.
Texto completo da fonteTkachenko, Sergey, Jürgen Nitsch e Moawia Al-Hamid. "High-Frequency Electromagnetic Field Coupling to Small Antennae in a Rectangular Resonator". International Journal of Antennas and Propagation 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/897074.
Texto completo da fonteCapozzoli, Amedeo, Claudio Curcio, Giuseppe D'Elia, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero e Angelo Liseno. "A Probe-Compensated Helicoidal NF-FF Transformation for Aperture Antennas Using a Prolate Spheroidal Expansion". International Journal of Antennas and Propagation 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/753156.
Texto completo da fonteKirpanev, A. V., e N. A. Kirpanev. "Methods of antenna and «antenna- radome» system analysis based on amplitude and phase measurements of their far field spherical components". Issues of radio electronics 1, n.º 1 (13 de março de 2021): 19–25. http://dx.doi.org/10.21778/2218-5453-2021-1-19-25.
Texto completo da fonteWang, Wen-Qin. "Virtual Antenna Array Analysis for MIMO Synthetic Aperture Radars". International Journal of Antennas and Propagation 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/587276.
Texto completo da fonteKirpanev, A. V., e A. N. Mikhailov. "Dual-frequency offset transreflector antennas". Issues of radio electronics, n.º 8 (7 de agosto de 2019): 71–78. http://dx.doi.org/10.21778/2218-5453-2019-8-71-78.
Texto completo da fonteWang, Sungsik, Hyunsoo Kim, Dongyoon Kim e Hosung Choo. "Multi-Band Array Antenna Sharing a Common Aperture with Heterogeneous Array Elements". Applied Sciences 12, n.º 18 (18 de setembro de 2022): 9348. http://dx.doi.org/10.3390/app12189348.
Texto completo da fonteKojima, Seishiro, Naoki Shinohara e Tomohiko Mitani. "Synthesis loss in receiving array antennas and transmission efficiency in the Fresnel region". Wireless Power Transfer 4, n.º 2 (setembro de 2017): 120–31. http://dx.doi.org/10.1017/wpt.2017.10.
Texto completo da fonteDong, Jian, Ronghua Shi, Wentai Lei e Ying Guo. "Minimum Redundancy MIMO Array Synthesis by means of Cyclic Difference Sets". International Journal of Antennas and Propagation 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/323521.
Texto completo da fonteZhou, Li, e Ming Hou. "Research and Analysis about Array Antennas in Mobile Communications". Advanced Materials Research 760-762 (setembro de 2013): 628–33. http://dx.doi.org/10.4028/www.scientific.net/amr.760-762.628.
Texto completo da fonteCao, Yunqing, Menglong Wang, Daoyuan Sun e Dan Shan. "A Novel Miniaturized Four-Ridged Horn Antenna with Enhanced Gain". International Journal of Antennas and Propagation 2021 (7 de agosto de 2021): 1–7. http://dx.doi.org/10.1155/2021/8143395.
Texto completo da fonteLove, A. W. "Equivalent circuit for aperture antennas". Electronics Letters 23, n.º 13 (1987): 708. http://dx.doi.org/10.1049/el:19870504.
Texto completo da fontePovolotsky, F. K., e T. P. Sydorova. "Linear-phase aperture distribution antennas". IEEE Transactions on Antennas and Propagation 44, n.º 6 (junho de 1996): 874–78. http://dx.doi.org/10.1109/8.509891.
Texto completo da fonteHagen, Jon B., e Hans A. Baumgartner. "Backscatter gain of aperture antennas". Radio Science 31, n.º 4 (julho de 1996): 693–99. http://dx.doi.org/10.1029/96rs01095.
Texto completo da fonteLin, Yecong, e Sai-Wai Wong. "Coplanar Dual-Band Dual-Polarized Shared-Aperture Antenna Array For 4/5G Base Station Applications". Journal of Physics: Conference Series 2245, n.º 1 (1 de abril de 2022): 012020. http://dx.doi.org/10.1088/1742-6596/2245/1/012020.
Texto completo da fonteLi, Ming-Jian, Meng Li, Yu-Fei Liu, Xin-Yu Geng e Yuan-Yuan Li. "A Review on the Development of Spaceborne Membrane Antennas". Space: Science & Technology 2022 (7 de março de 2022): 1–12. http://dx.doi.org/10.34133/2022/9803603.
Texto completo da fontePark, Daesung, e Jaehoon Choi. "A Dual-Band Dual-Polarized Antenna with Improved Isolation Characteristics for Polarimetric SAR Applications". Applied Sciences 11, n.º 21 (26 de outubro de 2021): 10025. http://dx.doi.org/10.3390/app112110025.
Texto completo da fonteCsathó, Botond Tamás, Bálint Péter Horváth e Péter Horváth. "Modeling the near-field of extremely large aperture arrays in massive MIMO systems". Infocommunications journal 12, n.º 3 (2020): 39–46. http://dx.doi.org/10.36244/icj.2020.3.6.
Texto completo da fonteHannan, Hu. "Impulse responses of aperture antennas with arbitrary aperture distributions". Journal of Electronics (China) 3, n.º 3 (julho de 1986): 211–19. http://dx.doi.org/10.1007/bf02778883.
Texto completo da fonteKarmakar, N. C., e S. K. Padhi. "Very small aperture terminal broadband shared-aperture planar antennas". International Journal of RF and Microwave Computer-Aided Engineering 13, n.º 3 (maio de 2003): 180–93. http://dx.doi.org/10.1002/mmce.10078.
Texto completo da fonteDolzhikov, V. V. "Longitudinal distribution of the field intensity of a circular focused aperture". Radiotekhnika, n.º 205 (2 de julho de 2021): 118–28. http://dx.doi.org/10.30837/rt.2021.2.205.13.
Texto completo da fonteVatutin, S. I. "Synchronous Addition of Antenna Signals with a Shift of Sampling Pulses in Idealized Mode of Spacecraft Tracking by Target Designations". Rocket-Space Device Engineering and Information Systems 7, n.º 4 (2020): 22–37. http://dx.doi.org/10.30894/issn2409-0239.2020.7.4.22.37.
Texto completo da fonteVatutin, S. I., e P. A. Kozin. "Synchronous Addition of Antenna Field Signals with a Shift of Sampling Pulses during Spacecraft Tracking by Target Designations with Allowance for the Inertia of Antenna Motion". Rocket-space device engineering and information systems 8, n.º 4 (2021): 52–57. http://dx.doi.org/10.30894/issn2409-0239.2021.8.4.52.57.
Texto completo da fonteHeo, Jin Myeong, Jongwon Yoon, Hyun Kim, Youngwan Kim e Gangil Byun. "A Cross-Correlation-Based Approach to Pattern Distortion and Mutual Coupling for Shared-Aperture Antennas". Applied Sciences 11, n.º 20 (15 de outubro de 2021): 9652. http://dx.doi.org/10.3390/app11209652.
Texto completo da fonteZhang, Yongwei, e Anthony K. Brown. "Design of wide-band dual–polarized aperture array antennas". International Journal of Microwave and Wireless Technologies 4, n.º 3 (3 de abril de 2012): 373–78. http://dx.doi.org/10.1017/s1759078712000256.
Texto completo da fonteKashyap, Neeru, Geetanjali ., Dhawan Singh e Neha Sharma. "Comprehensive Study of Microstrip Patch Antenna Using Different Feeding Techniques". ECS Transactions 107, n.º 1 (24 de abril de 2022): 9545–57. http://dx.doi.org/10.1149/10701.9545ecst.
Texto completo da fonteGarcía-Pino, Antonio. "An analytical simplified model to characterize focused aperture antennas". International Journal of Microwave and Wireless Technologies 8, n.º 1 (5 de setembro de 2014): 41–49. http://dx.doi.org/10.1017/s1759078714001196.
Texto completo da fonteRusov, Yu S., e S. S. Krapivina. "Research of the Possibilities of Matching the Multi-element Receiving-Transmitting Irradiator Aperture". Radio Engineering, n.º 1 (30 de maio de 2021): 1–13. http://dx.doi.org/10.36027/rdeng.0121.0000168.
Texto completo da fonteComoretto, Gianni, Riccardo Chiello, Matt Roberts, Rob Halsall, Kristian Zarb Adami, Monica Alderighi, Amin Aminaei et al. "The Signal Processing Firmware for the Low Frequency Aperture Array". Journal of Astronomical Instrumentation 06, n.º 01 (março de 2017): 1641015. http://dx.doi.org/10.1142/s2251171716410154.
Texto completo da fonteIndrianti, Rizka Kurnia. "Build a Rectangular Patch Single Microstrip Antenna with Aperture Coupled for Wifi Application 2.4 Ghz". JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING 3, n.º 1 (25 de julho de 2019): 8. http://dx.doi.org/10.31289/jite.v3i1.2464.
Texto completo da fonteMeshcheriakov, Viktor V., Natalia V. Markova e Pavel D. Iurmanov. "Modeling and Practical Implementation of a Broadband Double-Ridged Horn Antenna with an Operating Range More Than an Octave and a High Level of Cross-Polarization Discrimination". Journal of the Russian Universities. Radioelectronics 22, n.º 5 (4 de dezembro de 2019): 42–51. http://dx.doi.org/10.32603/1993-8985-2019-22-5-42-51.
Texto completo da fonte