Siga este link para ver outros tipos de publicações sobre o tema: Aortic valve stenosis (AVS).

Livros sobre o tema "Aortic valve stenosis (AVS)"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 24 melhores livros para estudos sobre o assunto "Aortic valve stenosis (AVS)".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os livros das mais diversas áreas científicas e compile uma bibliografia correta.

1

Huber, Christoph. Transcatheter valve therapies. New York: Informa Healthcare USA, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

M, Bashore Thomas, e Davidson Charles J, eds. Percutaneous balloon valvuloplasty and related techniques. Baltimore: Williams & Wilkins, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Baumgartner, Helmut, Stefan Orwat, Elif Sade e Javier Bermejo. Heart valve disease (aortic valve disease): aortic stenosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0032.

Texto completo da fonte
Resumo:
Echocardiography has become the gold standard for the assessment of patients with aortic stenosis (AS). It allows morphological assessment of the aortic valve and provides information on the aetiology of the disease. The quantification of AS includes primarily the measurement of transaortic jet velocities and gradients as well as the calculation of the valve area, thus combining flow-dependent and relatively flow-independent variables. Awareness of potential pitfalls is fundamental when assessing these variables. Haemodynamic consequences of AS on left ventricular (LV) size, wall thickness, and function as well as associated valve lesions and estimates of pulmonary artery pressure are required for the comprehensive evaluation of the disease. In the setting of classical low-flow–low-gradient AS with reduced LV systolic function, low-dose dobutamine echocardiography is of particular diagnostic and prognostic importance. The entity of severe low-flow–low-gradient AS in the presence of preserved LV function remains a particular diagnostic challenge. For accurate differentiation from pseudo-severe AS or misclassified moderate AS, an integrated approach including additional variables such as the extent of valve calcification by computed tomography may be required. In addition to the assessment of AS aetiology and quantification of its severity, echocardiography can provide predictors of outcome that may have a major impact on the decision for intervention.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Rosenhek, Raphael, Robert Feneck e Fabio Guarracino. Aortic valve disease. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0014.

Texto completo da fonte
Resumo:
Echocardiography is the gold standard for the assessment of patients with aortic valve (AoV) disease. It allows a detailed morphological assessment of the AoV and thereby makes determination of the aetiology possible. In general, the quantification of aortic stenosis is based on the measurement of transaortic jet velocities and the calculation of AoV area, thus combining a flow-dependent and a flow-independent variable. In the setting of low-flow low-gradient AS, dobutamine echocardiography is of particular diagnostic and prognostic importance. The quantification of aortic regurgitation is based on qualitative and quantitative parameters. Awareness of potential pitfalls is fundamental. Haemodynamic consequences of AoV disease on left ventricular size, hypertrophy, and function as well as potentially coexisting valve lesions can be assessed simultaneously. In patients with AoV disease, predictors of outcome and indications for surgery are substantially defined by echocardiography.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Thorne, Sara, e Sarah Bowater. Valve and outflow tract lesions. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198759959.003.0008.

Texto completo da fonte
Resumo:
This chapter discusses valve and outflow tract lesions. It considers left ventricular outflow tract obstruction (LVOTO), including subvalvar aortic stenosis (AS), bicuspid aortic valve, and supravalvar AS. Also discussed are left ventricular inflow lesions, including congenital mitral valve abnormalities, cor triatriatum, and Shone syndrome. It also covers right ventricular outflow tract obstruction (RVOTO), including pulmonary valvar stenosis, supravalvar pulmonary stenosis, pulmonary artery stenosis, pulmonary atresia with intact septum, and double-chambered right ventricle. Ebstein anomaly is also discussed, including incidence, associations, natural history, presenting features in the adult, investigations, and management.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Thorne, Sara, e Paul Clift, eds. Left ventricular outflow tract obstruction (LVOTO). Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199228188.003.0008.

Texto completo da fonte
Resumo:
Introduction 68Subvalvar aortic stenosis (AS) 70Bicuspid aortic valve 72Supravalvar AS 74LVOTO may occur at different levels: • Subvalvular.• Valvular—including bicuspid aortic valve.• Supravalvular.• Coarctation— see p.118.Effects of LVOTO, irrespective of site of lesion, are: • ↑ afterload on LV....
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lancellotti, Patrizio, Julien Magne, Kim O’Connor e Luc A. Pierard. Mitral valve disease. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0015.

Texto completo da fonte
Resumo:
Native mitral valve disease is the second valvular heart disease after aortic valve disease. For the last few decades, two-dimensional Doppler echocardiography was the cornerstone technique for evaluating patients with mitral valve disease. Besides aetiological information, echocardiography allows the description of valve anatomy, the assessment of disease severity, and the description of the associated lesions.This chapter will address the echocardiographic evaluation of mitral regurgitation (MR) and mitral stenosis (MS).In MR, the following findings should be assessed: 1. Aetiology. 2. Type and extent of anatomical lesions and mechanisms of regurgitation. 3. The possibility of mitral valve repair. 4. Quantification of MR severity. 5. Quantification of MR repercussions.In MS, the following findings should be assessed: 1. Aetiology. 2. Type and extent of anatomical lesions. 3. Quantification of MS severity. 4. Quantification of MS repercussions. 5. Wilkins or Cormier scores for the possibility of percutaneous mitral commissuroplasty.Management of patients with mitral valve disease is currently based on symptoms and on echocardiographic evaluation at rest. Therefore, knowing how to assess the severity of valve diseases as well as the pitfalls and the limitations of each echocardiographic method is of primary importance.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Lancellotti, Patrizio, e Bernard Cosyns. Adult Congenital Heart Disease. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713623.003.0013.

Texto completo da fonte
Resumo:
Echocardiography has a fundamental role in patients with adult congenital heart disease. This chapter identifies the role of echocardiography in atrial septal defects, ventricular septal defects, atrioventricular septal defects, patent ductus arteriosus, and persistent left superior vena cava. For each condition, the role of transthoracic and transoesophagael echocardiogram are shown alongside examples of main types and features and haemodynamic effect. Echocardiographic findings of LV outflow tract obstruction, supravalvular aortic stenosis, aortic stenosis, and aortic coarction are covered, as well as an examination of complex congenital lesions, including the tetralogy of Fallot and Ebstein’s anomaly of the tricuspid valve.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Katritsis, Demosthenes G., Bernard J. Gersh e A. John Camm. Aortic stenosis. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199685288.003.0325_update_004.

Texto completo da fonte
Resumo:
Diagnosis and risk stratification of patients with aortic stenosis are presented. Indications for surgical therapy and percutaneous valve implantation based on the recommendations of ACC/AHA and ESC are summarized and tabulated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Davey, Patrick, e Jim Newton. Aortic stenosis. Editado por Patrick Davey e David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0093.

Texto completo da fonte
Resumo:
Aortic stenosis is characterized by thickening and reduced mobility of the aortic valve leaflets and results in restriction to the blood flow from the left ventricle to the aorta, and secondary left ventricular hypertrophy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Abbas, Amr E. Aortic Stenosis: Case-Based Diagnosis and Therapy. Springer, 2016.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Abbas, Amr E. Aortic Stenosis: Case-Based Diagnosis and Therapy. Springer, 2015.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

KAIRO, Kenzo. Quick Remedy for Aortic Valve Stenosis: Ultimate Treatment Guide for Aortic Valve Stenosis, Causes, Symtoms, Prevention, Management and More. Independently Published, 2022.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Kulkarni, Kunal, James Harrison, Mohamed Baguneid e Bernard Prendergast, eds. Cardiac surgery. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198729426.003.0022.

Texto completo da fonte
Resumo:
Cardiac surgery is a specialty which has seen a range of major advancements and pioneering procedures within the last century. The second half of the twentieth century saw advancements in the correction of complex congenital cardiac defects, heart-lung transplantation, and surgery for ischaemic and valvular heart disease, and many of these procedures are now viewed as routine cardiac surgery. This chapter focuses on trials in coronary artery disease, coronary artery bypass grafts, valve replacement, and aortic stenosis, and the clinical trials which have influenced treatment decisions in these areas.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Santavy, Petr, ed. Aortic Valve Stenosis - Current View on Diagnostics and Treatment. InTech, 2011. http://dx.doi.org/10.5772/1760.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Basso, Cristina, Gaetano Thiene e Siew Yen Ho. Heart valve disease (aortic valve disease): anatomy and pathology of the aortic valve. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0031.

Texto completo da fonte
Resumo:
The gross features of the aortic valve apparatus, consisting of three semilunar leaflets, three interleaflet triangles, three commissures, and the aortic wall, are discussed both in terms of normal and pathological anatomy. The concept of aortic annulus and the relationship of the aortic valve with the coronary arteries, the membranous septum, and conduction system and the mitral valve are addressed. When dealing with pathology, the chapter focuses on the main distinctive features of aortic valve stenosis and aortic valve incompetence. Regarding the former, the abnormalities reside in the cusps, either two or three in number, with cusp thickening, and calcification with or without commissural fusion (thus distinguishing senile and chronic rheumatic valve disease); in the latter, the gross changes can affect either the cusps (infective endocarditis with tissue perforation/laceration and rheumatic valve disease with tissue retraction) or the aortic wall (ascending aorta aneurysm either inflammatory or degenerative). The distinctive gross abnormalities in the various conditions are illustrated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

universitet, Aarhus, ed. Valve replacement for aortic stenosis: The curative potential of early operation. Oslo, 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Karp, Kjell. Aortic and mitral valve stenosis: Assessment by Doppler echocardiography and radionuclide angiography. University of Umea, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Romagnoli, Stefano, e Giovanni Zagli. Blood pressure monitoring in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0131.

Texto completo da fonte
Resumo:
Two major systems are available for measuring blood pressure (BP)—the indirect cuff method and direct arterial cannulation. In critically-ill patients admitted to the intensive care unit, the invasive blood pressure is the ‘gold standard’ as a tight control of BP values, and its change over time is important for choosing therapies and drugs titration. Since artefacts due to the inappropriate dynamic responses of the fluid-filled monitoring systems may lead to clinically relevant differences between actual and displayed pressure values, before considering the BP value shown as reliable, the critical care giver should carefully evaluate the presence/absence of artefacts (over- or under-damping/resonance). After the arterial pressure waveform quality has been verified, the observation of each component of the arterial wave (systolic upstroke, peak, systolic decline, small pulse of reflected pressure waves, dicrotic notch) may provide a number of useful haemodynamic information. In fact, changes in the arterial pulse contour are due the interaction between the heart beat and the whole vascular properties. Vasoconstriction, vasodilatation, shock states (cardiogenic, hypovolaemic, distributive, obstructive), valve diseases (aortic stenosis, aortic regurgitation), ventricular dysfunction, cardiac tamponade are associated with particular arterial waveform characteristics that may suggest to the physician underlying condition that could be necessary to investigate properly. Finally, the effects of positive-pressure mechanical ventilation on heart–lung interaction, may suggest the existence of an absolute or relative hypovolaemia by means of the so-called dynamic indices of fluid responsiveness.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Thomas M., M.D. Bashore (Editor) e Charles J. Davidson (Editor), eds. Percutaneous Balloon Valvuloplasty. Williams & Wilkins, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Lancellotti, Patrizio, e Bernard Cosyns. Heart Valve Disease. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198713623.003.0007.

Texto completo da fonte
Resumo:
Echocardiography plays a major role in the evaluation, monitoring and decision making of patients with valvular heart disease. This chapter examines the aetiologies, haemodynamic measurements, and various consequences in aortic, mitral and pulmonary valve stenosis. It also describes how to assess patients with valvular regurgitation (mitral, aortic and pulmonary), valvular prosthesis and definite or suspected infective endocarditis. For each condition, echocardiographic features of poor prognosis, including complications, embolic risk, and the timing for surgery are discussed. Indications for transoesophageal echocardiography and 3D echocardiography are highlighted, especially when a decision of valve repair is envisioned. The timing echocardiographic monitoring of patients with valvular heart disease is also described.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Katritsis, Demosthenes G., Bernard J. Gersh e A. John Camm. Left ventricular outflow tract obstruction. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199685288.003.0130_update_003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Ramrakha, Punit, e Jonathan Hill, eds. Valvular heart disease. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199643219.003.0003.

Texto completo da fonte
Resumo:
General considerations 144Acute rheumatic fever 146Mitral stenosis: clinical features 150Mitral stenosis: investigations 152Mitral stenosis guidelines 156Mitral regurgitation 158Mitral regurgitation guidelines 161Mitral valve prolapse 162Aortic stenosis 164Management of aortic stenosis 168Aortic regurgitation 170Aortic regurgitation guidelines ...
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Kovanen, Petri T., e Magnus Bäck. Valvular heart disease. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755777.003.0015.

Texto completo da fonte
Resumo:
The heart valves, which maintain a unidirectional cardiac blood flow, are covered by endothelial cells and structurally composed by valvular interstitial cells and extracellular matrix. Valvular heart disease can be either stenotic, causing obstruction of the valvular flow, or regurgitant, referring to a back-flow through the valve. The pathophysiological changes in valvular heart disease include, for example, lipid and inflammatory cell infiltration, calcification, neoangiogenesis, and extracellular matrix remodelling. The present chapter addresses the biology of the aortic and mitral valves, and the pathophysiology of aortic stenosis and mitral valve prolapse.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia