Literatura científica selecionada sobre o tema "Antineoplastic agents"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Antineoplastic agents".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Antineoplastic agents"

1

Carlson, Patricia A. "Antineoplastic agents". Critical Care Nursing Quarterly 18, n.º 4 (fevereiro de 1996): 1–15. http://dx.doi.org/10.1097/00002727-199602000-00002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Menta, Ernesto, e Manlio Palumbo. "Novel antineoplastic agents". Expert Opinion on Therapeutic Patents 7, n.º 12 (dezembro de 1997): 1401–26. http://dx.doi.org/10.1517/13543776.7.12.1401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Menta, Ernesto, e Manlio Palumbo. "Antineoplastic agents 1998". Expert Opinion on Therapeutic Patents 8, n.º 12 (dezembro de 1998): 1627–72. http://dx.doi.org/10.1517/13543776.8.12.1627.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Pettit, G. R., Y. Kamano, R. Aoyagi, C. L. Herald, D. L. Doubek, J. M. Schmidt e J. J. Rudloe. "Antineoplastic agents 100". Tetrahedron 41, n.º 6 (janeiro de 1985): 985–94. http://dx.doi.org/10.1016/s0040-4020(01)96466-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bukowski, Ronald M. "Novel antineoplastic agents". Current Oncology Reports 2, n.º 1 (janeiro de 2000): 9–10. http://dx.doi.org/10.1007/s11912-000-0004-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Hong, Samuel J., Edward C. Li, Linda M. Matusiak e Glen T. Schumock. "Spending on Antineoplastic Agents in the United States, 2011 to 2016". Journal of Oncology Practice 14, n.º 11 (novembro de 2018): e683-e691. http://dx.doi.org/10.1200/jop.18.00069.

Texto completo da fonte
Resumo:
Purpose: Recent cancer drug approvals are lauded as being more effective with relatively fewer adverse effects, but these treatments come with a great cost to the US health care system. There is little information on recent trends in actual antineoplastic expenditures representative of the whole US health care system or by sector. Therefore, the objective of this study was to describe antineoplastic expenditures in the United States by year and sector. Methods: This was a retrospective, cross-sectional study of IQVIA (formerly QuintilesIMS) National Sales Perspective data for the period of January 1, 2011, to December 31, 2016. Actual expenditures were totaled by health care sector and calendar year, then adjusted for medical-cost inflation to 2016 dollars. Growth was calculated as the percentage increase from the previous year. Results: Total expenditures of antineoplastic agents across all channels grew from $26.8 billion in 2011 to $42.1 billion in 2016. Antineoplastic spending increased 12.2% in 2016 (compared with the previous year), followed by 15.6% in 2015, 13.4% in 2014, 6.3% in 2013, and 0.4% in 2012. Throughout the study period, 96.5% of total antineoplastic expenditures occurred within clinics, mail-order pharmacies, nonfederal hospitals, and retail pharmacies. Conclusion: Antineoplastic expenditures are expected to increase because of continuing development and approval of costly targeted cancer therapies. Cost containment and utilization management strategies must be balanced so as not to restrict access or disrupt innovation. Future policies should focus on ensuring safe and appropriate use of antineoplastics while balancing long-term drug costs.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

DOLL, DONALD C., Q. SCOT RINGENBERG e JOHN W. YARBRO. "Antineoplastic Agents and Pregnancy". Obstetrical & Gynecological Survey 45, n.º 6 (junho de 1990): 376. http://dx.doi.org/10.1097/00006254-199006000-00008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pettit, George R., Noeleen Melody e Jean-Charles Chapuis. "Antineoplastic Agents. 605. Isoquinstatins". Journal of Natural Products 81, n.º 3 (19 de setembro de 2017): 451–57. http://dx.doi.org/10.1021/acs.jnatprod.7b00352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Hussain, M. A. ha, A. N. toinette J. Wozniak e M. A. rk B. Edelstein. "Neurotoxicity of antineoplastic agents". Critical Reviews in Oncology/Hematology 14, n.º 1 (fevereiro de 1993): 61–75. http://dx.doi.org/10.1016/1040-8428(93)90006-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Castells, M. "Hypersensitivity to Antineoplastic Agents". Current Pharmaceutical Design 14, n.º 27 (1 de setembro de 2008): 2892–901. http://dx.doi.org/10.2174/138161208786369803.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Antineoplastic agents"

1

Wan, Jung Wing. "Novel ether lipids as antineoplastic agents". Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242627.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Molyneux, Gemma. "Studies on the haemotoxicity of antineoplastic agents". Thesis, University College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435080.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chen, Alina. "New polyamine analogues as potential antineoplastic agents". Scholarly Commons, 2000. https://scholarlycommons.pacific.edu/uop_etds/2680.

Texto completo da fonte
Resumo:
The naturally occurring polyamines play an essential role in cell growth and proliferation. The levels of polyamines have been shown to increase in rapidly proliferating cancer cells. Therefore, compounds that inhibit enzymes in polyamine biosynthetic pathway may have therapeutic potential. Compounds capable of providing both in vitro and in vivo inhibition of almost all enzymes in the polyamine biosynthetic pathway are known. An exception is the lack of an agent that inhibits spermidine/spermine N 1 -acetyltransferase (SSAT), the rate-limiting enzyme in the catabolism of polyamines. The design, synthesis and characterization of five new polyamine analogues as potential inhibitors of SSAT are presented. Three compounds, N 1 -[3-(propenamido) propyl]-1,4-diaminobutane dihydrochloride 5 , N 1 -[3-(maleimido)propyl]-1,4-diamino-butane dihydrochloride 7 and N 1 -[3-(2-bromoacetamido)propyl]-1,4-diaminobutane dihydrochloride 9 , were designed as active-site-directed affinity label inhibitors. Two compounds, N-[N-(5-acetamido-2-hydroxypentyl-3-aminopropyl)]-1,4-diaminobutane trihydrochloride 12 and N-[3-(2-hydroxyethylamino)propyl]-1,4-diaminobutane trihydrochloride 14 , were designed as transition state-like analogue inhibitors. These compounds were synthesized using one key intermediate, N-(3-aminopropyl)-N,N ′ -bis-(tert-butoxycarbonyl)-1,4-diaminobutane 3 . Three of these synthesized compounds, 5 , 7 and 12 were evaluated for their ability to inhibit SSAT. The enzyme used was a crude extract of human large cell undifferentiated lung carcinoma cell line NCI H157 cells. These synthetic analogues when tested against the crude enzyme extract at concentrations of 0.05, 0.1, 1 and 5 μM appeared to show no effects on the activity of SSAT.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Ganley, Brian. "Investigations into the chemical mechanisms of biological activity by heterocyclic di-N-oxides and 1,2 benzodithiolan-3-one 1-oxides". free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9999285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Ramirez, Daniel A. Kane Robert R. "Synthesis of protected amino thymidines and new thiol derivatives of the vascular targeting agent combretastatin A-4". Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/5008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ganley, Brian Christopher. "Investigations into the chemical mechanisms of biological activity by heterocyclic di-N-oxides and 1,2 benzodithiolan-3-one 1-oxides /". free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9999285.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Reese, Michael. "Drug design (STAT5 modulators), development (Glyceollin I) and improvement (Esmolol Plus) /". Connect to full text in OhioLINK ETD Center, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1265033116.

Texto completo da fonte
Resumo:
Thesis (M.S.)--University of Toledo, 2009.
Typescript. "Submitted as partial fulfillment of the requirements for the Master of Science Degree in Medicinal Chemistry." "A thesis entitled"--at head of title. Bibliography: leaves 45-48.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kanyanda, Stonard Sofiel Elisa. "Screening of natural products and Alkylating agents for Antineoplastic Activity". Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6433_1363357514.

Texto completo da fonte
Resumo:

Background and objectives: Apoptosis is a process in which a cell programmes its own death. It is a highly organized physiological mechanism in which injured or damaged cells are destroyed. Apart from physiological stimuli however, exogenous factors can induce apoptosis. Many anti-cancer drugs work by activating apoptosis in cancer cells. Natural substances have been found to have the ability to induce apoptosis in various tumour cells and these substances have been used as templates for the construction of 
novel lead compounds in anticancer treatment. On the other hand, alkylating agents such as cisplatin, cis- [PtCl2 (NH3) 2] have been widely used as antineoplastic agents for a 
wide variety of cancers including testicular, ovarian, neck and head cancers, amongst others. However, the use of cisplatin as an anticancer agent is limited due to toxicity and resistance problems. The aim of this present study was to screen the leaves of Rhus laevigata, a South African indigenous plant, for the presence of pro-apoptotic and 
anti-proliferative natural compounds and also to screen newly synthesised palladium based complexes (15 and 57) and a platinum based complex (58) for their antineoplastic 
activities tested against a panel of cell lines. Results. The results showed that crude methanol extracts from Rhus laevigata as well as the newly synthesised palladium based complexes (15 and 57) and a platinum based complex (58) induced apoptosis in the cell lines tested, as demonstrated by the externalization of phosphatidylserine, mitochondrial membrane permeabilization,caspase-3 activation, and DNA fragmentation. Caski (cervical cancer) and H157 (non small cell lung carcinoma) cell lines treated with the methanol extract from Rhus laevigata however, were more resistant to apoptosis induction. Among the metallocomplexes, complexes 15 and 57, palladium based complexes, were the most active. Conclusion: The methanol extract from the leaves of Rhus laevigata contain pro-apoptotic and antiproliferative natural compound(s), which need to be characterised and elucidated as they could provide the much-needed lead compounds in the fight against cancer. On the other hand the newly synthesized palladium complexes also need further evaluation to 
see if they can be used as anticancer agents that can overcome the problems associated with cisplatin.

Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Parker-, Johnson Kitani A. "An evaluation of novel antineoplastic agent on prostate cancer". DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2003. http://digitalcommons.auctr.edu/dissertations/3074.

Texto completo da fonte
Resumo:
This study examines the effects of novel antineoplastic agents(isochalcones) on human metastatic prostate cancer cell lines by screening cells for their relative antiproliferative effects, measuring the protein expression levels of specific oncogenes by Western blotting, and evaluating an array of genes ( 5184) to determine possible mechanisms of action of these novel isochalcones. The array data were supported by real-time polymerase chain reaction (PCR) techniques. The antineoplastic agents were screened in human metastatic prostate cancer cell lines (LNCaP, DU145, PC-3, and MDA-PCa-2b) and non-cancerous prostate epithelial cell line PZ-HPV-7 in concentrations ranging from nanomolar to millimolar. The alamar blue exclusion dye assay, a redox indicator, was used to evaluate cell proliferation when compared to the untreated control. DJ52 demonstrated a growth inhibitory effect on LNCaP, PC-3, and DU145 cell lines at the micromolar concentration (p<0.05). Based on these data, 1 x 106 cells were treated, protein isolated, and expression levels of epidermal growth factor (EGF) and omithine decarboxylase (ODC) were measured and compared to theuntreated controls. These data indicated a dose-dependent decrease of expression of EGF and ODC, therefore, suggesting that other key oncogenes may also have a decrease in expression when treated with these novel antineoplastic agents. Therefore, gene arrays were used to identify possible families of genes and/or specific pathways that may be responsible for the antiproliferative effects noted. It was determined that the key families of genes significantly induced by these agents (Pathways 4®) were proapoptotic and cell cycle regulators. ABI 7700 Prism was used to perform quantitative RT-PCR via the AB Sequence Detector® software.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lin, Tung Yin. "Synthetic studies towards the stellettins /". View online, 2008. http://repository.eiu.edu/theses/docs/32211131443971.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Antineoplastic agents"

1

Milne, George W. A., 1937-, ed. Ashgate handbook of antineoplastic agents. Aldershot: Ashgate, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

David, Goldman I., ed. Membrane transport of antineoplastic agents. Oxford: Pergamon Press, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

1932-, Borders Donald B., e Doyle Terrence W. 1942-, eds. Enediyne antibiotics as antitumor agents. New York: M. Dekker, 1995.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

E, Wittes Robert, e National Cancer Institute (U.S.), eds. Compilation of phase II results with single antineoplastic agents. Bethesda, Md: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, 1986.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

V, Wilman Derry E., ed. The chemistry of antitumour agents. London: Blackie, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

David, Kessel, ed. Resistance to antineoplastic drugs. Boca Raton, Fla: CRC Press, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

A, Valeriote Frederick, Corbett Thomas H e Baker Lawrence H, eds. Anticancer drug discovery and development: Natural products and new molecular models : proceedings of the Second Drug Discovery and Development Symposium, Traverse City, Michigan, USA, June 27-29, 1991. Boston: Kluwer Academic Publishers, 1994.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Chow, Nang-Ly. Liposomes as carriers of antineoplastic agents and immunomodulators. Bethesda, MD: U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, International Cancer Research Data Bank, 1989.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

National Institutes of Health (U.S.), ed. Compilation of phase II results with single antineoplastic agents. [Bethesda, Md.]: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, 1985.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some antiviral and antineoplastic drugs, and other pharmaceutical agents. Lyon, France: IARC, 2000.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Antineoplastic agents"

1

O'brien, Wendy Pott. "Antineoplastic Agents". In Physiologically Based Pharmacokinetic Modeling, 297–317. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471478768.ch11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Patsalos, P. N. "Antineoplastic Agents". In Antiepileptic Drug Interactions, 319–32. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2434-4_57.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Patsalos, Philip N. "Antineoplastic Agents". In Antiepileptic Drug Interactions, 253–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32909-3_61.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Patsalos, Philip N. "Antineoplastic Agents". In Antiseizure Medication Interactions, 287–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-82790-8_68.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kirschenbaum, Harold L., e Michelle M. Kalis. "Antineoplastic Agents". In The Pharmacy Practice Handbook of Medication Facts, 319–56. New York: Routledge, 2023. http://dx.doi.org/10.4324/9780429272783-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Schmähl, D., M. R. Berger, B. K. Keppler e T. Klenner. "New Antineoplastic Agents". In Cancer Therapy, 95–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74683-3_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bloch, Alexander. "Antineoplastic Agents and Cancer Cell Differentiation". In Cancer Biology and Therapeutics, 217–21. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9564-6_15.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Jack, David B. "Pharmacokinetic data on antineoplastic and immunosuppressant agents". In Handbook of Clinical Pharmacokinetic Data, 44–49. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-22495-1_14.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Balis, Frank M. "The pharmacology of antineoplastic agents in children". In The Role of Pharmacology in Pediatric Oncology, 15–27. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4267-7_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Berger, Martin R. "Experiments on the Carcinogenic Potential of Antineoplastic Agents". In Late Sequelae in Oncology, 263–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-46794-3_34.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Antineoplastic agents"

1

Alonso Castro, V., B. López Centeno, I. Martín Casasempere, D. Alioto, A. Gil Martín, M. Segura Bedmar, A. Aranguren Oyarzábal e MJ Calvo Alcántara. "4CPS-105 Prescribed antineoplastic agents in paediatric patients". In 24th EAHP Congress, 27th–29th March 2019, Barcelona, Spain. British Medical Journal Publishing Group, 2019. http://dx.doi.org/10.1136/ejhpharm-2019-eahpconf.254.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Yoon, Seug Yun, Namsu Lee, Sook-Ja Kim, Hee-Jeong Cheong, Kyoung Ha Kim e Jong-Ho Won. "Abstract 3843: Pulmonary toxicities of molecular targeted antineoplastic agents". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3843.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Labrèche, F., B. Roberge, A. Yennek, NJ Caron e J.-F. Bussières. "1508 Is hospital sanitation personnel exposed to antineoplastic agents?" In 32nd Triennial Congress of the International Commission on Occupational Health (ICOH), Dublin, Ireland, 29th April to 4th May 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/oemed-2018-icohabstracts.923.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Silva, Sâmela Maria de Oliveira, Manuelle de Araujo Holanda, Thaísa Mirella da Silva, Clebiana Alves e. silva Diniz e Suzana Maria de Oliveira Costa Meneses. "Role of oncological nursing in stroke of antineoplastic drugs". In II INTERNATIONAL SEVEN MULTIDISCIPLINARY CONGRESS. Seven Congress, 2023. http://dx.doi.org/10.56238/homeinternationalanais-044.

Texto completo da fonte
Resumo:
Abstract Exposure to antineoplastic drugs poses a potential risk to the health of professionals who handle, administer and dispose of them. The risk of harmful effects arising from exposure to the cytotoxic properties of antineoplastic agents is not restricted to patients, and health professionals may also experience cellular and clinical changes related to occupational exposure to these substances. Professional exposure can occur at any time during the handling of chemotherapy, whether in preparation, administration or disposal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bradley, Cathy J., e Marcelo Coca Perraillon. "Abstract PR10: Fewer rural cancer patients treated with antineoplastic agents". In Abstracts: Eleventh AACR Conference on The Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; November 2-5, 2018; New Orleans, LA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7755.disp18-pr10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Trendowski, Matthew, Timothy D. Christen, Christopher Acquafondata e Thomas P. Fondy. "Abstract 3802: Evaluation of microfilament-directed cytochalasins as novel antineoplastic agents". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3802.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Escudero-Vilaplana, V., R. Collado-Borrell, A. Giménez-Manzorro, C. Ortega-Navarro, E. Chamorro de Vega, C. Ruiz-Martínez, C. Rodríguez-González, A. Herranz-Alonso e M. Sanjurjo-Sáez. "CP-163 Onco-haematological outpatients treated with oral antineoplastic agents: pharmacist interventions". In 22nd EAHP Congress 22–24 March 2017 Cannes, France. British Medical Journal Publishing Group, 2017. http://dx.doi.org/10.1136/ejhpharm-2017-000640.162.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kulemina, Lidia V., Kevin Morgan, Daniil Shabashvili, Carmen Allegra, Min Chen e Maria Zajac-Kaye. "Abstract 3892: Anti-cooperative allosteric inhibitors of thymidylate synthase as novel antineoplastic agents". In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3892.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Narrillos-Moraza, A., V. Escudero-Vilaplana, R. Collado-Borrell, A. Hoyo-Muñoz, A. Gimenez-Manzorro, MA Amor-Garcia, S. Osorio-Prendes, A. Calles-Blanco, A. Herranz-Alonso e M. Sanjurjo-Saez. "5PSQ-048 Analysis of drug interactions between oral antineoplastic agents and concurrent medications". In 25th EAHP Congress, 25th–27th March 2020, Gothenburg, Sweden. British Medical Journal Publishing Group, 2020. http://dx.doi.org/10.1136/ejhpharm-2020-eahpconf.365.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rodriguez, A., X. Fernández, A. Arderiu, O. Fando, S. Pineda, J. Urbina, M. Berzosa e D. Conde. "1ISG-003 Impact of telepharmacy and community pharmacy remote-dispensing on patients on oral antineoplastic agents". In 26th EAHP Congress, Hospital pharmacists – changing roles in a changing world, 23–25 March 2022. British Medical Journal Publishing Group, 2022. http://dx.doi.org/10.1136/ejhpharm-2022-eahp.2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Antineoplastic agents"

1

Antineoplastic agents - occupational hazards in hospitals. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, setembro de 2004. http://dx.doi.org/10.26616/nioshpub2004102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia