Literatura científica selecionada sobre o tema "Anticancer drugs"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Anticancer drugs".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Anticancer drugs"
D, Subba Reddy, Prasanthi G, Amruth Raj S, Hari Krishna T, Sowjanya K e Shantha Kumari K. "EVALUATION OF ANTICANCER GENERIC DRUGS AND BRANDED DRUGS". Indian Research Journal of Pharmacy and Science 5, n.º 1 (março de 2018): 1378–91. http://dx.doi.org/10.21276/irjps.2018.5.1.16.
Texto completo da fonteReese, David M. "Anticancer drugs". Nature 378, n.º 6557 (dezembro de 1995): 532. http://dx.doi.org/10.1038/378532c0.
Texto completo da fonteKutty, Dr A. V. M. "Usefulness of Phytochemicals as Anticancer Drugs". JOURNAL OF CLINICAL AND BIOMEDICAL SCIENCES 16, n.º 1 (19 de março de 2019): 1–2. http://dx.doi.org/10.58739/jcbs/v09i1.7.
Texto completo da fonteAtkins, Joshua H., e Leland J. Gershell. "Selective anticancer drugs". Nature Reviews Drug Discovery 1, n.º 7 (julho de 2002): 491–92. http://dx.doi.org/10.1038/nrd842.
Texto completo da fonteAtkins, Joshua H., e Leland J. Gershell. "Selective anticancer drugs". Nature Reviews Cancer 2, n.º 9 (setembro de 2002): 645–46. http://dx.doi.org/10.1038/nrc900.
Texto completo da fonteBibby, M. C. "Combretastatin anticancer drugs". Drugs of the Future 27, n.º 5 (2002): 475. http://dx.doi.org/10.1358/dof.2002.027.05.668645.
Texto completo da fonteMeegan, Mary J., e Niamh M. O’Boyle. "Special Issue “Anticancer Drugs”". Pharmaceuticals 12, n.º 3 (16 de setembro de 2019): 134. http://dx.doi.org/10.3390/ph12030134.
Texto completo da fonteCiarimboli, Giuliano. "Anticancer Platinum Drugs Update". Biomolecules 11, n.º 11 (4 de novembro de 2021): 1637. http://dx.doi.org/10.3390/biom11111637.
Texto completo da fonteZhang, Jason Y. "Apoptosis-based anticancer drugs". Nature Reviews Drug Discovery 1, n.º 2 (fevereiro de 2002): 101–2. http://dx.doi.org/10.1038/nrd742.
Texto completo da fonteBlagosklonny, Mikhail V. "Teratogens as Anticancer Drugs". Cell Cycle 4, n.º 11 (22 de agosto de 2005): 1518–21. http://dx.doi.org/10.4161/cc.4.11.2208.
Texto completo da fonteTeses / dissertações sobre o assunto "Anticancer drugs"
Apps, MIchael Garry. "Platinum anticancer drugs and drug delivery systems". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14409.
Texto completo da fonteKozlowska, Hanna. "Interaction of dexrazoxane with anticancer drugs". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/MQ32158.pdf.
Texto completo da fonteTao, Zhimin. "Analysis of cytotoxicity of anticancer drugs". Related electronic resource:, 2007. http://proquest.umi.com/pqdweb?did=1407688361&sid=4&Fmt=2&clientId=3739&RQT=309&VName=PQD.
Texto completo da fonteLiu, Tong. "The synthesis of novel anticancer drugs". Thesis, University of Glasgow, 2003. http://theses.gla.ac.uk/4464/.
Texto completo da fonteSong, Di. "Bladder tissue pharmacokinetics of anticancer drugs /". The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487940308433249.
Texto completo da fonteRatcliffe, Andrew J. "Synthesis of non-mutagenic anticancer drugs". Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378598.
Texto completo da fontePettersson, Hanna Ilse. "Quinolinequinones as anticancer agents". Thesis, University of Exeter, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249038.
Texto completo da fonteWang, Shining. "DRUG DEVELOPMENT OF TARGETED ANTICANCER DRUGS BASED ON PK/PD INVESTIGATIONS". Diss., Temple University Libraries, 2008. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/2535.
Texto completo da fontePh.D.
EGFR inhibitors, such as gefitinib, are examples of targeted anticancer drugs whose drug sensitivity is related to gene mutations that adds a pharmacogenetic [PG] dimension to any pharmacokinetic [PK] and pharmacodynamic [PD] analysis. The goal of this project was to characterize the PK/PD properties of gefitinib in tumors and then apply these results to design rational drug design regimens, and provide a foundation for future studies with EGFR inhibitors. Progressions of in vitro and in vivo studies were completed to understand the PK and PD behavior of gefitinib. In vitro cytotoxicity assays were first conducted to confirm the gefitinib sensitivity differences in a pair of human glioblastoma cell lines, LN229-wild-type EGFR and LN229-EGFRvIII mutant, an EGFR inhibitor-sensitizing mutation. Subsequent in vitro PD studies identified phosphorylated-ERK1/2 (pERK) as a common PD marker for both cell lines. To describe the most salient features of drug disposition and dynamics in the tumor, groups of mice bearing either subcutaneous LN229-wild-type EGFR or LN229-EGFRvIII mutant tumors were administered gefitinib at doses of 10 mg/kg intravenously (IV), 50 mg/kg intraarterially (IA) and 150 mg/kg orally (PO). In each group, gefitinib plasma and tumor concentrations were quantitated, as were tumoral pERK. Hybrid physiologically-based PK/PD models were developed for each tumor type, which consisted of a forcing function describing the plasma drug concentration-profile, a tumor compartment depicting drug disposition in the tumor, and a mechanistic target-response PD model characterizing pERK in the tumor. Gefitinib showed analogous PK properties in each tumor type, yet different PD characteristics consistent with the EGFR status of the tumors. Using the PK/PD model for each tumor type, simulations were done to define multiple-dose regimens for gefitinib that yielded equivalent PD profiles of pERK in each tumor type. Based on the designed PK/PD equivalent dosing regimens for each tumor type, gefitinib 150 mg/kg PO qd × 15 days and 65 mg/kg PO qd × 15 days multiple-dose studies were conducted in wild-type EGFR and EGFRvIII mutant tumor groups, respectively. In each tumor group, gefitinib plasma and tumor concentrations were measured on both day 1 and day 15, as were tumoral amounts of pERK. Different from single-dose model simulations, gefitinib showed nonlinear PK property in the wild-type tumor due to the down-regulation of membrane transporter ABCG2. Moreover, acquired resistance of tumoral pERK inhibition was observed in both tumor types. Nevertheless, gefitinib had an analogous growth suppression action in both tumor groups, supporting the equivalent PD dosing strategy. Overall, single-dose gefitinib PK/PD investigations in a pair of genetically distinct glioblastomas facilitated the development of hybrid physiologically-based PK/PD models for each tumor type, and further introduced a novel concept of PK/PD equivalent dosing regimens which could be applied in novel drug development paradigms. Preliminary multiple-dose gefitinib studies revealed more complex PK/PD characteristics that needed to be further explored.
Temple University--Theses
Leczkowska, Anna. "Non-covalent DNA-binding ruthenium anticancer drugs". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1695/.
Texto completo da fonteYarema, Kevin J. (Kevin Jon). "Cellular responses to platinum-based anticancer drugs". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/33495.
Texto completo da fonteLivros sobre o assunto "Anticancer drugs"
1938-, Pratt William B., e Pratt William B. 1938-, eds. The anticancer drugs. 2a ed. New York: Oxford University Press, 1994.
Encontre o texto completo da fonteGarth, Powis, ed. Anticancer drugs: Reactive metabolism and drug interactions. Oxford, England: Pergamon Press, 1994.
Encontre o texto completo da fonteAvendaño, Carmen. Medicinal chemistry of anticancer drugs. Amsterdam: Elsevier, 2008.
Encontre o texto completo da fonteConvention, United States Pharmacopeial. Fact sheets on anticancer drugs. [Washington, D.C.?]: National Cancer Institute [distributor], 1994.
Encontre o texto completo da fonteNational Cancer Institute (U.S.), ed. Fact sheets on anticancer drugs. [Bethesda, Md.?: National Cancer Institute, 1994.
Encontre o texto completo da fonteSotiris, Missailidis, ed. Anticancer therapeutics. Chichester: John Wiley & Sons, 2008.
Encontre o texto completo da fonte1964-, Spencer Peter, e Holt Walter, eds. Anticancer drugs: Design, delivery and pharmacology. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteSaeidnia, Soodabeh. New Approaches to Natural Anticancer Drugs. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14027-8.
Texto completo da fonteHacker, Miles P., John S. Lazo e Thomas R. Tritton, eds. Organ Directed Toxicities of Anticancer Drugs. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-2023-4.
Texto completo da fonteHildebrand, Jerzy, ed. Neurological Adverse Reactions to Anticancer Drugs. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76142-3.
Texto completo da fonteCapítulos de livros sobre o assunto "Anticancer drugs"
Schacter, Lee, Marcel Rozencweig, Claude Nicaise, Renzo Canetta, Susan Kelley e Laurie Smaldone. "Anticancer Drugs". In Early Phase Drug Evaluation in Man, 644–54. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-10705-6_49.
Texto completo da fonteSchwab, Matthias, Elke Schaeffeler e Hiltrud Brauch. "Anticancer Drugs". In Metabolism of Drugs and Other Xenobiotics, 365–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch13.
Texto completo da fonteIsnard-Bagnis, Corinne, Vincent Launay-Vacher, Svetlana Karie e Gilbert Deray. "Anticancer drugs". In Clinical Nephrotoxins, 511–35. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-84843-3_22.
Texto completo da fonteZhao, Le, Zengyi Shao e Jacqueline V. Shanks. "Anticancer Drugs". In Industrial Biotechnology, 237–69. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527807833.ch8.
Texto completo da fonteGanguly, A. K., e Sesha Sridevi Alluri. "Anticancer Drugs". In Medicinal Chemistry, 89–101. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003182573-4.
Texto completo da fonteIsnard-Bagnis, Corinne, e Gilbert Deray. "Anticancer drugs". In Clinical Nephrotoxins, 353–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/1-4020-2586-6_18.
Texto completo da fonteCateni, Francesca, e Marina Zacchigna. "PEG–Anticancer Drugs". In Macromolecular Anticancer Therapeutics, 221–63. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0507-9_6.
Texto completo da fonteKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee e Chan Kim. "Immunotherapeutic Anticancer Drugs and Other Miscellaneous Anticancer Drugs". In Cancer Drug Discovery, 135–53. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_7.
Texto completo da fonteKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee e Chan Kim. "Alkylating Anticancer Drugs". In Cancer Drug Discovery, 71–94. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_4.
Texto completo da fonteKim, Kyu-Won, Jae Kyung Roh, Hee-Jun Wee e Chan Kim. "Antimetabolic Anticancer Drugs". In Cancer Drug Discovery, 95–112. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-024-0844-7_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Anticancer drugs"
Ma, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin e Wei Li. "A Perfused Two-Chamber System for Anticancer Drug Screening". In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Texto completo da fonteSchiestl, Robert H., Michael Davoren e Yelena Rivina. "Abstract 1793: Novel radiation mitigators and anticancer drugs". In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1793.
Texto completo da fonteSettleman, Jeffrey E. "Abstract CN06-04: Reversible tolerance to anticancer drugs." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-cn06-04.
Texto completo da fonteSchiestl, Robert H., Yelena Rivina e Michael Davoren. "Abstract 3729: Novel radiation mitigators and anticancer drugs". In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3729.
Texto completo da fonteZhukovets, T. A., M. А. Khancheuski, I. V. Koktysh, E. I. Kvasyuk e A. G. Sysa. "ANTIOXIDANT EFFECTS OF EMOXYPINE AS ADJUVANT OF ANTI-CANCER DRUGS". In SAKHAROV READINGS 2021: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2021. http://dx.doi.org/10.46646/sakh-2021-2-52-55.
Texto completo da fonteCao, Tingying, Xiangdong Gao e Yueqing Gu. "Biodegradable polylactide microspheres containing anticancer drugs used as injectable drug delivery system". In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381726.
Texto completo da fonteNikkhah, Mehdi, Jeannine S. Strobl e Masoud Agah. "Study the Effect of Anticancer Drugs on Human Breast Cancer Cells Using Three Dimensional Silicon Microstructures". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66680.
Texto completo da fonteJ., Alex Mathew, e Nixon Raj N. "Insilico Docking Studies on Anticancer Drugs for Breast Cancer". In 2009 International Association of Computer Science and Information Technology - Spring Conference. IEEE, 2009. http://dx.doi.org/10.1109/iacsit-sc.2009.12.
Texto completo da fonteShrestha, Gajendra, Michael Xiao, Richard Robison, Larry L. St Clair e Kim O'Neill. "Abstract 3220: Lichen derived polyphenols as potential anticancer drugs". In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3220.
Texto completo da fonteRibeiro, Tatiane. "23 Evidence-based medicine challenges in new anticancer drugs". In EBM Live Abstracts, July 2019, Oxford, UK. BMJ Publishing Group Ltd, 2019. http://dx.doi.org/10.1136/bmjebm-2019-ebmlive.104.
Texto completo da fonteRelatórios de organizações sobre o assunto "Anticancer drugs"
Howard, David, Peter Bach, Ernst Berndt e Rena Conti. Pricing in the Market for Anticancer Drugs. Cambridge, MA: National Bureau of Economic Research, janeiro de 2015. http://dx.doi.org/10.3386/w20867.
Texto completo da fonteZhang, Jian-Ting. Molecular Study of Interactions between P-Glycoprotein and Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1995. http://dx.doi.org/10.21236/ada300162.
Texto completo da fonteBiswas, Kaustav, e Samuel J. Danishefsky. Synthesis of Epothilone Analogs: Toward the Development of Potent Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2002. http://dx.doi.org/10.21236/ada409475.
Texto completo da fonteInoue, Takashi, e Mamoru Narukawa. Anti-tumor efficacy of anti-PD-1/PD-L1 antibodies in combination with other anticancer drugs in solid tumors: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, outubro de 2022. http://dx.doi.org/10.37766/inplasy2022.10.0004.
Texto completo da fonteFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2007. http://dx.doi.org/10.21236/ada486569.
Texto completo da fonteFeltmate, Colleen. Application of Nanotechnology in the Targeted Release of Anticancer Drugs in Ovarian Cancer Treatment. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2006. http://dx.doi.org/10.21236/ada481424.
Texto completo da fonteBeerman, Terry A. Discovery of DNA Binding Anticancer Drugs That Target Oncogenic Transcription Factors Associated With Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2001. http://dx.doi.org/10.21236/ada403322.
Texto completo da fonteVenedicto, Melissa, e Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, outubro de 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Texto completo da fonteMacedo, Luciana, e Linda Malkas. The Human Breast Cancer DNA Synthesome Can Serve as a Novel In Vitro Model System for Studying the Mechanism of Action of Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, julho de 2000. http://dx.doi.org/10.21236/ada393926.
Texto completo da fonteJiang, Haiyan. The Human Breast Cancer Cell DNA Synthesome Can Serve as a Novel in Vitro Model System for Studying the Mechanism of Action of Anticancer Drugs. Fort Belvoir, VA: Defense Technical Information Center, julho de 1999. http://dx.doi.org/10.21236/ada384124.
Texto completo da fonte