Artigos de revistas sobre o tema "Anodic electrocatalysts"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Anodic electrocatalysts".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Pham Hong, Hanh, Linh Do Chi, Phong Nguyen Ngoc e Lam Nguyen Duc. "Synthesis and characterization of NiCoOx mixed nanocatalysts for anion exchanger membrane water electrolysis (AEMWE)". Vietnam Journal of Catalysis and Adsorption 9, n.º 2 (31 de julho de 2020): 49–53. http://dx.doi.org/10.51316/jca.2020.028.
Texto completo da fonteYun, Young Hwa, Changsoo Lee e Bonjae Koo. "Improvement of Mass Activity of IrOx Electrocatalyst in Acidic Oxygen Evolution Reaction Using Bi3TaO7 Support". ECS Meeting Abstracts MA2024-02, n.º 42 (22 de novembro de 2024): 2786. https://doi.org/10.1149/ma2024-02422786mtgabs.
Texto completo da fonteBalčiūnaitė, Aldona, Noha A. Elessawy, Biljana Šljukić, Arafat Toghan, Sami A. Al-Hussain, Marwa H. Gouda, M. Elsayed Youssef e Diogo M. F. Santos. "Effective Fuel Cell Electrocatalyst with Ultralow Pd Loading on Ni-N-Doped Graphene from Upcycled Water Bottle Waste". Sustainability 16, n.º 17 (29 de agosto de 2024): 7469. http://dx.doi.org/10.3390/su16177469.
Texto completo da fonteHeath, Megan Muriel, Elise Fosdal Closs, Svein Sunde, Anita Hamar Reksten, Tor Olav Sunde, Magdalena Müller, Hågen Røe, Abhishek Rajbhandari e Frode Seland. "The Potential of Ruthenate Pyrochlores As Anodic Electroctalysts for PEM Water Electrolysisoral Presentation". ECS Meeting Abstracts MA2024-02, n.º 42 (22 de novembro de 2024): 2847. https://doi.org/10.1149/ma2024-02422847mtgabs.
Texto completo da fonteTian, Na, Bang-An Lu, Xiao-Dong Yang, Rui Huang, Yan-Xia Jiang, Zhi-You Zhou e Shi-Gang Sun. "Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts". Electrochemical Energy Reviews 1, n.º 1 (março de 2018): 54–83. http://dx.doi.org/10.1007/s41918-018-0004-1.
Texto completo da fonteBelhaj, Ines, Alexander Becker, Filipe M. B. Gusmão, Biljana Šljukić, Miguel Chaves, Salete S. Balula, Luís Cunha Silva e Diogo M. F. Santos. "Au-Based MOFs as Anodic Electrocatalysts for Direct Borohydride Fuel Cells". ECS Meeting Abstracts MA2023-02, n.º 41 (22 de dezembro de 2023): 2053. http://dx.doi.org/10.1149/ma2023-02412053mtgabs.
Texto completo da fonteProtsenko, V. S., D. A. Shaiderov, O. D. Sukhatskyi, T. E. Butyrina, S. A. Korniy e F. I. Danilov. "DES-assisted electrodeposition and characterization of an electrocatalyst for enhanced urea oxidation in green hydrogen production". Voprosy Khimii i Khimicheskoi Tekhnologii, n.º 1 (fevereiro de 2025): 65–70. https://doi.org/10.32434/0321-4095-2025-158-1-65-70.
Texto completo da fonteGunji, Takao, e Futoshi Matsumoto. "Electrocatalytic Activities towards the Electrochemical Oxidation of Formic Acid and Oxygen Reduction Reactions over Bimetallic, Trimetallic and Core–Shell-Structured Pd-Based Materials". Inorganics 7, n.º 3 (7 de março de 2019): 36. http://dx.doi.org/10.3390/inorganics7030036.
Texto completo da fonteBanti, Angeliki, Kalliopi Maria Papazisi, Stella Balomenou e Dimitrios Tsiplakides. "Effect of Calcination Temperature on the Activity of Unsupported IrO2 Electrocatalysts for the Oxygen Evolution Reaction in Polymer Electrolyte Membrane Water Electrolyzers". Molecules 28, n.º 15 (2 de agosto de 2023): 5827. http://dx.doi.org/10.3390/molecules28155827.
Texto completo da fonteDu, Hongfang, Qian Liu, Ningyan Cheng, Abdullah M. Asiri, Xuping Sun e Chang Ming Li. "Template-assisted synthesis of CoP nanotubes to efficiently catalyze hydrogen-evolving reaction". J. Mater. Chem. A 2, n.º 36 (2014): 14812–16. http://dx.doi.org/10.1039/c4ta02368d.
Texto completo da fonteLiu, Bin Hong, Zhou Peng Li e Seijirau Suda. "Electrocatalysts for the anodic oxidation of borohydrides". Electrochimica Acta 49, n.º 19 (agosto de 2004): 3097–105. http://dx.doi.org/10.1016/j.electacta.2004.02.023.
Texto completo da fonteShi, Qiurong, Chengzhou Zhu, Dan Du e Yuehe Lin. "Robust noble metal-based electrocatalysts for oxygen evolution reaction". Chemical Society Reviews 48, n.º 12 (2019): 3181–92. http://dx.doi.org/10.1039/c8cs00671g.
Texto completo da fonteLi, Xiumin, Xiaogang Hao, Abuliti Abudula e Guoqing Guan. "Nanostructured catalysts for electrochemical water splitting: current state and prospects". Journal of Materials Chemistry A 4, n.º 31 (2016): 11973–2000. http://dx.doi.org/10.1039/c6ta02334g.
Texto completo da fonteBai, Jirong, Wangkai Zhou, Jinnan Xu, Pin Zhou, Yaoyao Deng, Mei Xiang, Dongsheng Xiang e Yaqiong Su. "RuO2 Catalysts for Electrocatalytic Oxygen Evolution in Acidic Media: Mechanism, Activity Promotion Strategy and Research Progress". Molecules 29, n.º 2 (22 de janeiro de 2024): 537. http://dx.doi.org/10.3390/molecules29020537.
Texto completo da fonteLi, Meng, Ping Liu e Radoslav R. Adzic. "Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols". Journal of Physical Chemistry Letters 3, n.º 23 (14 de novembro de 2012): 3480–85. http://dx.doi.org/10.1021/jz3016155.
Texto completo da fonteBalčiūnaitė, Aldona, Kush K. Upadhyay, Kristina Radinović, Diogo M. F. Santos, M. F. Montemor e Biljana Šljukić. "Steps towards highly-efficient water splitting and oxygen reduction using nanostructured β-Ni(OH)2". RSC Advances 12, n.º 16 (2022): 10020–28. http://dx.doi.org/10.1039/d2ra00914e.
Texto completo da fonteTing, Jyh-Ming, Hui-Chuan Chen e Thi Xuyen Nguyen. "Dicarboxylferrocene Ligand Promoted Structural Reconstruction in Bimetallic Nico-Based Metal Organic Framework for Energy-Saving H2 Production via Urea Oxidation Reaction". ECS Meeting Abstracts MA2024-02, n.º 39 (22 de novembro de 2024): 2601. https://doi.org/10.1149/ma2024-02392601mtgabs.
Texto completo da fonteXia, Meng, Xinxin Yu, Zhuangzhuang Wu, Yuzhen Zhao, Lijuan Feng e Qi Chen. "Metal Imidazole-Modified Covalent Organic Frameworks as Electrocatalysts for Alkaline Oxygen Evolution Reaction". Molecules 29, n.º 21 (27 de outubro de 2024): 5076. http://dx.doi.org/10.3390/molecules29215076.
Texto completo da fonteScott, Soren B., Albert K. Engstfeld, Zenonas Jusys, Degenhart Hochfilzer, Nikolaj Knøsgaard, Daniel B. Trimarco, Peter C. K. Vesborg, R. Jürgen Behm e Ib Chorkendorff. "Anodic molecular hydrogen formation on Ru and Cu electrodes". Catalysis Science & Technology 10, n.º 20 (2020): 6870–78. http://dx.doi.org/10.1039/d0cy01213k.
Texto completo da fonteYamada, Naohito, Damian Kowalski, Akira Koyama, Chunyu Zhu, Yoshitaka Aoki e Hiroki Habazaki. "High dispersion and oxygen reduction reaction activity of Co3O4 nanoparticles on platelet-type carbon nanofibers". RSC Advances 9, n.º 7 (2019): 3726–33. http://dx.doi.org/10.1039/c8ra09898k.
Texto completo da fonteLee, CHangsoo, Bonjae Koo, Sechan Lee, MinJoong Kim, Gisu Doo, Hyeonjung Park e Hyunseok Cho. "Development of Ba3TiO7-Supported IrOx Electrocatalysts for Enhanced Mass Activity in the Acidic Oxygen Evolution Reaction". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1755. http://dx.doi.org/10.1149/ma2024-01341755mtgabs.
Texto completo da fonteProtsenko, Vyacheslav. "Electrochemical Surface Treatment of Ni–Cu Alloy in a Deep Eutectic Solvent to form High Performance Electrocatalysts for Hydrogen Production". Journal of Mineral and Material Science (JMMS) 3, n.º 2 (18 de junho de 2022): 1–2. http://dx.doi.org/10.54026/jmms/1037.
Texto completo da fonteLi, Guixian, Shoudeng Wang, Hongwei Li, Peng Guo, Yanru Li, Dong Ji e Xinhong Zhao. "Carbon-Supported PdCu Alloy as Extraordinary Electrocatalysts for Methanol Electrooxidation in Alkaline Direct Methanol Fuel Cells". Nanomaterials 12, n.º 23 (26 de novembro de 2022): 4210. http://dx.doi.org/10.3390/nano12234210.
Texto completo da fonteMoreno-Hernandez, Ivan A. "(Invited) Direct Observation of Nanoscale Heterogeneity in Ruthenium Oxide Rutile Nanocrystals for the Oxygen Evolution Reaction via Liquid Phase Transmission Electron Microscopy". ECS Meeting Abstracts MA2024-02, n.º 61 (22 de novembro de 2024): 4112. https://doi.org/10.1149/ma2024-02614112mtgabs.
Texto completo da fonteKuang, Yun, Michael J. Kenney, Yongtao Meng, Wei-Hsuan Hung, Yijin Liu, Jianan Erick Huang, Rohit Prasanna et al. "Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels". Proceedings of the National Academy of Sciences 116, n.º 14 (18 de março de 2019): 6624–29. http://dx.doi.org/10.1073/pnas.1900556116.
Texto completo da fonteOsman, Siti Hasanah, Siti Kartom Kamarudin, Sahriah Basri e Nabila A. Karim. "Anodic Catalyst Support via Titanium Dioxide-Graphene Aerogel (TiO2-GA) for A Direct Methanol Fuel Cell: Response Surface Approach". Catalysts 13, n.º 6 (14 de junho de 2023): 1001. http://dx.doi.org/10.3390/catal13061001.
Texto completo da fonteZhen, Janet, Tucker Forbes, Timothy Lin, Jinhui Tao, Mark H. Engelhard e Jingjing Qiu. "Investigation of Plasmon-Mediated Oxygen Evolution Reaction". ECS Meeting Abstracts MA2024-01, n.º 53 (9 de agosto de 2024): 2868. http://dx.doi.org/10.1149/ma2024-01532868mtgabs.
Texto completo da fonteChen, Dayi, Fabien Giroud e Shelley D. Minteer. "Nickel Cysteine Complexes as Anodic Electrocatalysts for Fuel Cells". Journal of The Electrochemical Society 161, n.º 9 (2014): F933—F939. http://dx.doi.org/10.1149/2.0811409jes.
Texto completo da fonteSun, Miguang, e Jiajun Gu. "Progress in Preparation and Research of Water Electrolysis Catalyst for Transition Metal Phosphide". Journal of Physics: Conference Series 2152, n.º 1 (1 de janeiro de 2022): 012063. http://dx.doi.org/10.1088/1742-6596/2152/1/012063.
Texto completo da fonteDavari, Elaheh, e Douglas G. Ivey. "Mn-Co oxide/PEDOT as a bifunctional electrocatalyst for oxygen evolution/reduction reactions". MRS Proceedings 1777 (2015): 1–6. http://dx.doi.org/10.1557/opl.2015.449.
Texto completo da fonteChen, D., G. G. W. Lee e S. D. Minteer. "Utilizing DNA for Electrocatalysis: DNA-Nickel Aggregates as Anodic Electrocatalysts for Methanol, Ethanol, Glycerol, and Glucose". ECS Electrochemistry Letters 2, n.º 2 (20 de novembro de 2012): F9—F13. http://dx.doi.org/10.1149/2.002302eel.
Texto completo da fonteKim, Min Gi, Ashish Gaur, Jin Uk Jang, Kyeong-Han Na, Won-Youl Choi e HyukSu Han. "High-Entropy Carbonates (Ni-Mn-Co-Zn-Cr-Fe) as a Promising Electrocatalyst for Alkalized Seawater Oxidation". International Journal of Energy Research 2024 (6 de março de 2024): 1–16. http://dx.doi.org/10.1155/2024/9996841.
Texto completo da fonteMORITA, Masayuki, Hideo KIJIMA e Yoshiharu MATSUDA. "Anodic Oxidation of Formic Acid at Nafion-Modified Palladium Electrocatalysts". Denki Kagaku oyobi Kogyo Butsuri Kagaku 60, n.º 6 (5 de junho de 1992): 554–56. http://dx.doi.org/10.5796/electrochemistry.60.554.
Texto completo da fonteSriphathoorat, Rinrada, Kai Wang e Pei Kang Shen. "Trimetallic Hollow Pt–Ni–Co Nanodendrites as Efficient Anodic Electrocatalysts". ACS Applied Energy Materials 2, n.º 2 (15 de janeiro de 2019): 961–65. http://dx.doi.org/10.1021/acsaem.8b01741.
Texto completo da fonteBosse, Jan, e Andrew Akbashev. "Probing Lattice Oxygen Oxidation in Perovskite Electrocatalysts By Resonant Inelastic X-Ray Scattering". ECS Meeting Abstracts MA2023-01, n.º 47 (28 de agosto de 2023): 2517. http://dx.doi.org/10.1149/ma2023-01472517mtgabs.
Texto completo da fonteRivera-Maldonado, Ricardo Andres, Anthony Gironda, Jared E. Abramson, Abraham Varughese, Gerald Seidler e Brandi Michelle Cossairt. "Probing the Stability of Ni2P Nanoparticle Electrocatalysts via Operando Benchtop X-Ray Absorption Spectroscopy". ECS Meeting Abstracts MA2024-02, n.º 60 (22 de novembro de 2024): 4062. https://doi.org/10.1149/ma2024-02604062mtgabs.
Texto completo da fonteEskandrani, Areej A., Shimaa M. Ali e Hibah M. Al-Otaibi. "Study of the Oxygen Evolution Reaction at Strontium Palladium Perovskite Electrocatalyst in Acidic Medium". International Journal of Molecular Sciences 21, n.º 11 (27 de maio de 2020): 3785. http://dx.doi.org/10.3390/ijms21113785.
Texto completo da fonteGiziński, Damian, Anna Brudzisz, Janaina S. Santos, Francisco Trivinho-Strixino, Wojciech J. Stępniowski e Tomasz Czujko. "Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions". Catalysts 10, n.º 11 (17 de novembro de 2020): 1338. http://dx.doi.org/10.3390/catal10111338.
Texto completo da fonteHaidar, Fatima, Mathieu Maas, Andrea Piarristeguy, Annie Pradel, Sara Cavaliere e Marie-Christine Record. "Ultra-Thin Platinum Deposits by Surface-Limited Redox Replacement of Tellurium". Nanomaterials 8, n.º 10 (15 de outubro de 2018): 836. http://dx.doi.org/10.3390/nano8100836.
Texto completo da fonteWang, Tian-Jiao, Guang-Rui Xu, Hui-Ying Sun, Hao Huang, Fu-Min Li, Pei Chen e Yu Chen. "Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous nickel phosphide nanotubes on nickel foam". Nanoscale 12, n.º 21 (2020): 11526–35. http://dx.doi.org/10.1039/d0nr02196b.
Texto completo da fonteKong, Ling Bin, Xiao Wei Wang, Ru Tao Wang, Yong Chun Luo e Long Kang. "Ag Catalyst on Ordered Mesoporous Carbon with High Electro-Oxidation Activity for Formaldehyde". Advanced Materials Research 347-353 (outubro de 2011): 494–97. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.494.
Texto completo da fonteChoi, Yun-Hyuk. "Electrocatalytic Activities of High-Entropy Oxides for the Oxygen Evolution Reaction". ECS Meeting Abstracts MA2023-02, n.º 54 (22 de dezembro de 2023): 2604. http://dx.doi.org/10.1149/ma2023-02542604mtgabs.
Texto completo da fonteAlaufey, Rayan, e Maureen H. Tang. "A Mechanistic Investigation of Electrochemical Ozone Production Using Nickel and Antimony Doped Tin Oxide in Non-Aqueous Electrolytes". ECS Meeting Abstracts MA2022-02, n.º 64 (9 de outubro de 2022): 2389. http://dx.doi.org/10.1149/ma2022-02642389mtgabs.
Texto completo da fonteMeeying, Siriporn, Pinsuda Viravathana, Atchana Wongchaisuwat e Siree Tangbunsuk. "Synthesis and Characterization of PdCoNi Nanocomposites Supported on Graphene as Anodic Electrocatalysts for Methanol Oxidation in Direct Methanol Fuel Cell". Key Engineering Materials 658 (julho de 2015): 190–94. http://dx.doi.org/10.4028/www.scientific.net/kem.658.190.
Texto completo da fonteCastello, Carolina, Maria Vincenza Pagliaro, Francesco Bartoli, Marco Bellini, Tailor Peruzzolo, Enrico Berretti, Hamish Andrew Miller e Francesco Vizza. "Silver-M-Phathalocyanine (M= Co,Fe,Cu) Electrocatalysts for Oxygen Reduction Reaction in H2/O2 Anion Exchange Membrane Fuel Cells". ECS Meeting Abstracts MA2023-02, n.º 41 (22 de dezembro de 2023): 2023. http://dx.doi.org/10.1149/ma2023-02412023mtgabs.
Texto completo da fonteChen, Zilong, Wenxia Xu, Weizhou Wang, Zhe Wu, Hongdong Li, Jianping Lai e Lei Wang. "Bamboo‐Like Carbon Nanotube‐Encapsulated Fe2C Nanoparticles Activate Confined Fe2O3 Nanoclusters Via d‐p‐d Orbital Coupling for Alkaline Oxygen Evolution Reaction". Small, 10 de novembro de 2024. http://dx.doi.org/10.1002/smll.202409325.
Texto completo da fonteNiyati, Ataollah, Arianna Moranda, Juan Felipe Basbus e Ombretta Paladino. "Unlocking the Potential of NiCo2O4 Nanocomposite: Morphology Modification via Urea Quantity, Hydrothermal and Calcination Temperature". New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d4nj01581a.
Texto completo da fonteCai, Linke, Yao Liu, Ying Gao, Bo-Hang Zhao, Jiacheng Guan, Xiao Liu, Bin Zhang e Yi Huang. "Atomically Asymmetrical Ir–O–Co Sites Enable Efficient Chloride‐mediated Ethylene Electrooxidation in Neutral Seawater". Angewandte Chemie, 25 de outubro de 2024. http://dx.doi.org/10.1002/ange.202417092.
Texto completo da fonteCai, Linke, Yao Liu, Ying Gao, Bo-Hang Zhao, Jiacheng Guan, Xiao Liu, Bin Zhang e Yi Huang. "Atomically Asymmetrical Ir–O–Co Sites Enable Efficient Chloride‐mediated Ethylene Electrooxidation in Neutral Seawater". Angewandte Chemie International Edition, 25 de outubro de 2024. http://dx.doi.org/10.1002/anie.202417092.
Texto completo da fonteWang, Yan, Ming Ni, Wei Yan, Chuhong Zhu, Daochuan Jiang, Yupeng Yuan e Haiwei Du. "Supported High‐Entropy Alloys for Electrooxidation of Benzyl Alcohol Assisted Water Electrolysis". Advanced Functional Materials, 29 de novembro de 2023. http://dx.doi.org/10.1002/adfm.202311611.
Texto completo da fonte