Literatura científica selecionada sobre o tema "Anion exchange polymer membrane"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Anion exchange polymer membrane".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Anion exchange polymer membrane"
Cho, Hyeongrae, Henning Krieg e Jochen Kerres. "Performances of Anion-Exchange Blend Membranes on Vanadium Redox Flow Batteries". Membranes 9, n.º 2 (17 de fevereiro de 2019): 31. http://dx.doi.org/10.3390/membranes9020031.
Texto completo da fonteKuppusamy, Hari Gopi, Prabhakaran Dhanasekaran, Niluroutu Nagaraju, Maniprakundil Neeshma, Baskaran Mohan Dass, Vishal M. Dhavale, Sreekuttan M. Unni e Santoshkumar D. Bhat. "Anion Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells—A Concise Review". Materials 15, n.º 16 (15 de agosto de 2022): 5601. http://dx.doi.org/10.3390/ma15165601.
Texto completo da fonteLee, Seunghyun, Hyejin Lee, Tae-Hyun Yang, Byungchan Bae, Nguyen Anh Thu Tran, Younghyun Cho, Namgee Jung e Dongwon Shin. "Quaternary Ammonium-Bearing Perfluorinated Polymers for Anion Exchange Membrane Applications". Membranes 10, n.º 11 (26 de outubro de 2020): 306. http://dx.doi.org/10.3390/membranes10110306.
Texto completo da fontePintauro, Peter N. "(Invited) Monopolar and Bipolar Membranes Based on Nanofiber Electrospinning". ECS Meeting Abstracts MA2023-02, n.º 39 (22 de dezembro de 2023): 1893. http://dx.doi.org/10.1149/ma2023-02391893mtgabs.
Texto completo da fonteYang, Zezhou, Ryszard Wycisk e Peter N. Pintauro. "(Invited) Bipolar Membranes with a 3D Junction of Interlocking Electrospun Fibers". ECS Meeting Abstracts MA2022-02, n.º 44 (9 de outubro de 2022): 1661. http://dx.doi.org/10.1149/ma2022-02441661mtgabs.
Texto completo da fonteWu, Wei. "Block copolymers as anion exchange membrane in fuel cells". Applied and Computational Engineering 66, n.º 1 (29 de maio de 2024): 198–203. http://dx.doi.org/10.54254/2755-2721/66/20240951.
Texto completo da fonteKerres, Jochen Alfred. "(Invited) Novel Polymer and Membrane Development Strategies for Water Electrolysis". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1741. http://dx.doi.org/10.1149/ma2024-01341741mtgabs.
Texto completo da fonteSamsudin, Asep Muhamad, Sigrid Wolf, Michaela Roschger e Viktor Hacker. "Poly(vinyl alcohol)-based Anion Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells". International Journal of Renewable Energy Development 10, n.º 3 (12 de fevereiro de 2021): 435–43. http://dx.doi.org/10.14710/ijred.2021.33168.
Texto completo da fonteShen, Haiyang, Yifei Gong, Wei Chen, Xianbiao Wei, Ping Li e Congliang Cheng. "Anion Exchange Membrane Based on BPPO/PECH with Net Structure for Acid Recovery via Diffusion Dialysis". International Journal of Molecular Sciences 24, n.º 10 (11 de maio de 2023): 8596. http://dx.doi.org/10.3390/ijms24108596.
Texto completo da fonteJung, Jiyoon, Young Sang Park, Gwan Hyun Choi, Hyun Jin Park, Cheol-Hee Ahn, Seung Sang Hwang e Albert S. Lee. "Alkaline-Stable, In Situ Menshutkin Coat and Curable Ammonium Network: Ion-Solvating Membranes for Anion Exchange Membrane Water Electrolyzers". International Journal of Energy Research 2023 (30 de setembro de 2023): 1–12. http://dx.doi.org/10.1155/2023/7416537.
Texto completo da fonteTeses / dissertações sobre o assunto "Anion exchange polymer membrane"
Panda, Ronit Kumar. "Développement d'un simulateur d'électrolyse alcalin avec membrane polymère échangeuse d'anions". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI041.
Texto completo da fonteThis report describes the modelling AEMWE performances (chap 1) and degradations (chap 2). The models are developed in the MePHYSTO code developed at CEA in the Matlab/Simulink platform. The performance model has been developed thanks to the electrochemical characterization performed at CEA during the project. The essential electrochemical phenomena are captured including KOH concentration effect and bubble coverage effect and the IV curves are correctly simulated.Regarding the degradation, the work is based on the experimental results obtained at CEA during the project. The experimental results provided several ideas: the degradations include both reversible and irreversible parts that evolve differently. Indeed, the reversible degradations increases with time while irreversible parts decreases. We assumed the reversible part comes from the anode bubble coverage. Regarding the irreversible part, several phenomena are involved. We quantified the different contributions of these degradations thanks to the electrochemical model we developed, and the IV curves provided. First, the catalyst degradation is quantified via the estimation of the roughness factor at the beginning of the IV curves. Secondly, the ion-exchange over-potential evolution is quantified by fitting the model using the IV curves. Then, the degradations associated to the mass transport are analyzed in detail. We assumed that they are induced by the loss of wettability that increases the anode bubble coverage and thus, reduces the performances. This is coherent with the increase of the reversible degradations we associate to the bubble coverage. The evolution of the sinter contact angle that characterized this loss of wettability is calculated using an original approach. We develop a method based on simulations of the flow in the real geometry of the sinter using tomographic 3D picture and the GeoDict code. The flow properties (permeability and capillary pressure) and the contact angle are extracted from these simulations and are used in the MePHYSTO code to calculate the performances at different aged times with a good accuracy
García, Cruz Leticia. "Electroorganic synthesis using a Polymer Electrolyte Membrane Electrochemical Reactor: electrooxidation of primary alcohols in alkaline medium". Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/61507.
Texto completo da fonteThieu, Lam Mai. "Multiscale Tortuous Diffusion in Anion- and Cation-Exchange Membranes: Exploration of Counterions, Water Content, and Polymer Functionality". Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88849.
Texto completo da fonteMS
Bertolotti, Bruno. "Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air". Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0676/document.
Texto completo da fonteThis work focuses on the synthesis and characterization of polymer membranes to be used as anion exchange membranes for protection on an air electrode in a new lithium–air battery for electric vehicle. In these materials showing interpenetrating polymer networks (IPN) architecture, a hydrogenated cationic polyelectrolyte network, the poly(epichlorohydrin) (PECH), is associated with a neutral network, which can be either hydrogenated or fluorinated. First, the synthesis of the polyelectrolyte network and the membrane/electrode assembly were optimized. Second, a first IPN series associating the PECH network with a poly(hydroxyethyl methacrylate) network was synthesized. Third, the same PECH network was associated with a fluorinated polymer network. All the materials were characterized, and optimal synthesis methods as well as an optimal composition were determined for each association. The IPNs show improved properties compared with the single PECH network. The air electrode protected by these new anion exchange membranes shows improved stability in the working conditions of the lithium-air battery. Specifically, a lifetime of 1000 h was obtained when the electrode was modified with a fluorinated IPN, a 20-fold increase in the lifetime of the non-modified electrode
Xu, Shaoyi. "SYNTHESIS OF PERFLUOROHETEROAROMATIC POLYMERS FOR ION-CONDUCTING MEMBRANE FUEL CELLS VIA FREE RADICAL-BASED REACTIONS AND SYNTHESIS OF DI-CATIONIC IONIC LIQUIDS AS EFFICIENT SO2 ABSORBENTS". OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1160.
Texto completo da fontePasquini, Luca. "Ion - conducting polymeric membranes for electrochemical energy devices". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4750.
Texto completo da fonteThe research aims to propose membranes for electrochemical devices alternative to the commercial ones able to reach the right compromise in term of good ionic conduction, stability and long life time for an high efficiency. We realized proton exchange, anion exchange and amphoteric membranes based on stable functionalized aromatic polymers (PEEK, PSU). We thus introduced sulfonic groups on a PEEK backbone to exchange protons or ammonium groups on PEEK and PSU to exchange anions. We also realized amphoteric membranes able to exchange at the same time both kinds of ions. The continuous optimization of synthesis parameters, the choice of different polymers and/or functionalization groups and the improvement of casting procedures and treatments of membranes, led to good results in terms of ionic conductivity, selectivity and stability.The study of the main parameters of the synthesized membranes demonstrates a thermal stability between 140 and 200°C depending on the selected membrane, a mechanical behavior characterized by a high elastic modulus and tensile strength and a relatively low ductility strongly influenced on the degree of hydration of the membrane as well as the eventual presence of cross-linking. Working on the degree of functionalization and the type of functionalizing groups, we obtained a tunable water uptake, an elevated ionic conductivity for different ions (up to ≃ 3 mS/cm for anionic conducting polymers) and a very low ion permeability (vanadium ions for RFB applications) down to ≃ 10-10 cm2/min, which is much below typical literature data for cation- and anion separation membranes and a challenge parameters for technological applications
Catonné, Jean-Claude. "Contribution à l'étude du défaut de sélectivité présenté par les membranes échangeuses d'anions, dans le cadre de leurs applications au traitement électrochimique de régénération des solutions aqueuses d'acides minéraux". Paris 6, 1986. http://www.theses.fr/1986PA066030.
Texto completo da fonteWang, Lianqin. "Nanostructured Electrocatalysts for Anion Exchange Membrane Fuel Cells". Doctoral thesis, Università degli studi di Trieste, 2015. http://hdl.handle.net/10077/11107.
Texto completo da fonteLo sviluppo sostenibile è una sfida prioritaria per la nostra società. La possibilità di costruire un futuro sostenibile, mantenendo al contempo alti standard nella qualità della vita e preservando risorse e ambiente, dipende dalla disponibilità di metodi per la produzione verde di energía e prodotti chimici. La produzione simultanea di prodotti chimici ed energía può essere ottenuta nelle celle a combustibile che impiegano combustibili liquidi (Direct Liquid Fuel Cells – DLFC), dispositivi in cui l’energia chimica contenuta nelle molecole di combustibile è convertita direttamente in energía elettrica. Le DLFC impiegano solitamente combustibili a base di piccole molecole organiche quali ad esempio alcoli ed acido formico. Questi combustibili sono di particolare interesse, dal momento che possono essere ottenuti a partire da biomassa, con un impatto minore sulle emissioni di gas serra rispetto ai combustibili fossili. Allo stato attuale le DLFC impiegano platino in quantità elevate. Questo per due ragioni: i) il platino è un buon catalizzatore sia per l’ossidazione di composti organici che per la riduzione dell’ossigeno e ii) il platino è stabile in ambiente acido. E’ importante sottolineare che le attuali DLFC impiegano membrane a scambio protonico come elettroliti e dunque richiedono ambienti fortemente acidi per avere un’adeguata conducibilità. Le DLFC impiegano carichi di platino maggiori di 1 mg cm-2, un fatto che ne limita molto la possibilità di diffusione commerciale. In questo lavoro, grazie alla disponibilità di membrane a scambio anionico ad elevata conducibilità (Tokuyama A-201), abbiamo sviluppato delle DLFC alcaline (Anion Exchange Membrane Direct Liquid Fuel Cells – AEM-DLFC). Ciò e’ stato fatto con l’obiettivo di eliminare il platino dai dispositivi. E’ infatti noto che il palladio è un catalizzatore molto attivo per l’ossidazione delle piccole molecole organiche in ambiente alcalino e che la reazione di riduzione dell’ossigeno puo’ essere catalizzata da composti di ferro e cobalto (es. ftalocianine). La tecnología qui riportatata si basa sull’impiego di anodi di palladio supportati da carbon black (Vulcan XC-72), membrane a scambio anionico e ftalocianine di ferro e cobalto subbortate da carbon black con maggiore area superficiale rispetto a quello impiegato all’anodo (Ketjen Black 600). Un fatto importante è che le ftalocianine di ferro e cobalto non sono attive per l’ossidazione di molecole organiche. Ciò è particolarmente rilevante per le fuel cells perché il cross-over del combustibile attraverso la membrana non produce significative cadute di potenziale e quindi dell’efficienza energetica. La parte sperimentale della tesi inizia con un capitolo in cui si decrivono le prestazioni di AEM-DLFC esenti da platino ed alimentate ad etanolo. Questa parte del lavoro è particolarmente rilevante dal momento che è la prima e completa caratterizzazione della performance energetica di questi dispositivi. In particolare si sono determinati i seguenti parametri: i) massima densità di potenza, ii) efficienza energetica e iii) l’energia prodotta per singolo batch di combustibile. Tutti questi parametri sono stati determinati in funzione della composizione del combustibile. Abbiamo scoperto che la composizione del combustibile che massimizza uno dei parametri sopra riportati generalmente ha effetti negativi sugli altri. E’ dunque necesario definire la composizione del combustibile in funzione della particolare applicazione cui il dispositivo è destinato. Abbiamo inoltre studiato l’effetto dell’aggiunta di un ossido promotore, la ceria, al catalizatore anódico, mostrando che le prestazioni migliorano significativamente. In alcuni casi l’efficienza energetica può essere migliorata anche di più del 100% grazie alla semplice aggiunta di dell’ossido promotore. Il capitolo successivo e’ dedicato alle celle a combustile che impiegano combustibili a base di formiato (Direct Formate Fuel Cells – DFFC). In questo caso si sono impiegati catalizzatori nanostrutturati di Pd supportato da Vulcan XC-72 e ftalocianine di ferro e cobalto, rispettivamente all’anodo ed al catodo, ottenendo un potenziale di circuito aperto superiore ad 1 V. Le celle alcaline al formiato hanno prodotto una densità massima di potenza superiore alle celle alcaline che impiegano metanolo ed etanolo, ed anche alle celle acide che impiegano acido formico. In particolare l’efficienza energetica delle celle al formiato è stata superiore di un fattore 4 a quella delle migliori celle alcaline ad etanolo. Questo e’ un punto cruciale per l’applicazione pratica della tecnología proposta. Infatti l’efficienza energetica e’ uno dei cardini per il raggiungimento della sostenibilità e, senza dubbio, il vincolo principale per i sistemi che devono produrre grandi quantita’ di energía, come la generazione stazionaria di energía elettrica. Anche nel caso delle celle al formiato, abbiamo osservato che la composizione del combustibile è essenziale nel definire la performance energetica. Abbiamo mostrato che la massima densità di potenza si ottiene con un combustibile che contiene formiato 2 M e KOH 2 M, mentre l’energia per singolo batch di combustibile, la migliore conversione del combustibile e l’efficienza energetica sono migliori per il formiato 4 M e KOH 4 M. Al fine di migliorare la capacità del palladio di catalizzare l’ossidazione elettrochimica di composti organici rinnovabili, abbiamo sviluppato un metodo elettrochimico originale per il trattamento delle superfici degli elettrodi. Il trattamento consiste nell’applicazione di un potenziale ad onda quadra (Square Wave Potential – SWP) che produce un aumento della rugosità superficiale e una modifica della distribuzione delle terminazioni cristalline della superficie, incrementando la densità degli atomi di Pd superficiali a basso numero di coordinazione (< 8). Il trattamento si è rivelato efficace nel migliorare la cinetica di ossidaizione dell’etanolo, dell’etilen glicole e del glicerolo. I trattementi sviluppati hanno prodotto incrementi dell’attività fino ad un fattore 5.6. L’analisi FTIR dei processi di ossidazione ha dimostrato che anche la distribuzione dei prodotti di ossidazione e’ affetta dal trattamento. In particolate abbiamo riscontrato un incremento nella capacità dei catalizzatori ottenuti per SWP di rompere il legame C-C. Il trattamento elettrochimico con potenziale ad onda quadra è stato sviluppato anche per le superfici di platino, con l’obbiettivo di fornire uno strumento per ridurne il contenuto nelle fuel cells quando non sia possibile eliminarlo completamente. Nel caso del platino si è riscontrato che il parámetro piu’ importante per l’efficienza del trattamento è il periodo dell’onda quadra. Le superfici più attive si sono ottenute con un periodo di trattamento di 120 minuti, mentra la stabilità massima si e’ avuta per campioni trattati con onde quadre con periodo di 360 minuti. Tramite esperimenti FTIR si è inoltre concluso che nel caso del platino il trattamento inibisce la rottura del legame C-C. Questo fatto è importante perchè limita la formazione di frammenti CO che sono le principali specie che avvelenano gli elettrocatalizzatori a base di platino. Il capitolo 7 è dedicato allo studio dei meccanismi di deattivazione dei catalizzatori di palladio per l’ossidazione elettrochimica in ambente alcalino di alcoli. L’argomento è rilevante poichè la deattivazione è una delle principali cause che limita la diffusione di questi dispositivi. Abbiamo dimostrato che la formazione di ossidi è la causa che determina maggiormente la degradazione della performance catalítica. Siamo giunti a questa conclusione combinando le informazioni proveniente da indagini elettrochimiche ed esperimenti che impiegano la radiazione di sincrotrone. L’analisi degli spettri XANES (Near Edge X-ray Absorption Spectroscopy) ha mostrato che il palladio è presente nella sua forma metallica nei catalizzatori freschi, mentre è completamente ossidato dopo l’impiego in fuel cells. Nello studio si conclude che per allungare la vita degli anodi a base di palladio è necesario che il catalizzatore anodico non sia esposto a potenziali superiori a 0.7 V. Ciò è possibile in pratica con una semplice elettronica di controllo da abbinare alla cella. Al fine di aumentare la cinetica di ossidazione abbiamo provveduto ad effettuare esperimenti di ossidazione dell’etanolo a temperatura intermedie (> 100 °C) in autoclave. Abbiamo osservato che l’incremento della temperatura aumenta in misura significativa la capacità dei catalizzatori di ossidare l’etanolo in ambiente alcalino. Questo fatto è stato ascritto prevalentemente al miglioramento della capacità di adsorbire specie idrossido alla superficie del palladio. Lo stesso miglioramento non è stato osservato per esperimenti condotti in ambiente acido. Si sono inoltre realizzati esperimenti di ossidazione dell’etanolo su superfici di carburo di tungsteno in matrice di cobalto. Si è provato che questo materiale non mostra un’attività significativa per l’ossidazione di etanolo in ambiente alcalino. In ogni caso si è osservato che il materiale è stabile in ambienti alcalini, in un range di temperatura compreso tra 100 e 200 °C. Questo fatto unitamente all’elevata conducibilità suggerisce che il carburo di tungsteno in matrice di cobalto possa essere impiegato come supporto per la fase attiva dei catalizzatori, quali appunto il palladio. Lo stesso materiale ha mostrato una debole attività nell’ossidazione dell’etanolo ad una temperatura di 50 °C in ambiente acido. La stabilità non era però suficiente per permettere la caratterizzatione delle proprietà catalitiche in soluzioni acide a temperatura superiori.
Amongst current societal challenges sustainability is certainly a priority. The possibility of building a sustainable future, while maintaining high standards in the quality of life and preserving environment and resources, strongly relies on the availability of methods for the green production of energy and chemicals. The production of chemicals together with the on-demand power generation can be achieved in Direct Liquid Fuel Cells (DLFCs), devices in which the chemical energy of a liquid fuel is converted into electrical energy. DLFCs usually employ Small Organic Molecules (SOMs), such as alcohols or formic acid, as fuels. These fuels can be obtained from biomass feedstock. Consequently their use generates a significantly lower atmospheric CO2 with respect to the use of fossil fuels, resulting in a potential mitigation of the “greenhouse effect”. At the present stage, DLFCs rely on the use of the rare and costly platinum. This is for two reasons: i) platinum is a good catalyst for both SOMs oxidation and Oxygen Reduction Reaction (ORR); ii) platinum is stable in acidic environment. It is worth mentioning that most of DLFCs employ proton exchange membranes as electrolytes and need strongly acidic conditions for achieving low resistivity. In these systems also the water management can be a problem, as it is attracted to the cathode side for polarization and water is frequently introduced in the feed stream to the fuel cell. At present acidic DLFCs operate with a platinum content largely exceeding 1 mg cm-2, a fact that severely hampers the diffusion of such devices. In this investigation, thanks to a low resistivity Anion Exchange Membranes (AEM), the Tokuyama A-201, we have developed efficient alkaline direct liquid fuel cells (AEM-DLFCs). This has been done with the purpose of eliminating platinum from the devices. Indeed it is known that palladium effectively catalyzes SOMs oxidation in alkali; besides, oxygen reduction reaction can also be effectively achieved by using iron and cobalt phtalocyanines (Pc). Consequently the membrane electrode assembly (MEA) of a AEM-DLFC can be assembled using: i) a palladium based anode, ii) a Tokuyama A-201 membrane and iii) a cathode containing FePc-CoPc/C as electrocatalyst obtained from the high temperature pyrolysis of FePc-CoPc. An important fact is that FePc-CoPc/C is not active at all for the oxidation of SOMs. This has the major implication that fuel crossover through the membrane does not result in significant potential (and so energy efficiency) drop in fuel cells. The experimental part of this thesis starts with a chapter devoted to the analysis of the energy performance of platinum-free AEM-DLFCs fueled with ethanol (Chapter 3). This work is the first exhaustive analysis of the energy performance of such devices. Particularly we have determined the major parameters that characterize the fuel cell operations: i) maximum power density, ii) energy efficiency and iii) energy delivered per single fuel batch. All these parameters have been determined as a function of the fuel composition. We have discovered that the fuel concentration that maximizes one of the parameters can be detrimental to the others with the fundamental consequence that fuel composition must be selected according to the selected application. The effect of adding a promoting oxide, CeO2, to the anode catalyst has also been investigated. In some cases efficiency can be improved up to the 100% by simply adding cerium oxide to the anode catalyst. We have also proved that DEFCs are suitable candidates for the µ-fuel cells technology as we have shown their ability to operate with no or little performance degradation for 3 months at low power density (< 1 mW cm-2). Chapter 4 is dedicated to the Direct Formate Fuel Cells (DFFCs). Nanostructured Pd/C and FePc-CoPc/C have been employed at the anode and cathode side respectively. A large open circuit voltage (≥1.0 V) was obtained. This has been attributed to the larger (as compared with DEFCs) Nernst potential of the DFFCs and the use of FePc-CoPc/C as cathode electrocatalyst to restrain the reduction of cell voltage by fuel crossover. Our DFFCs have shown maximum power density larger than state of the art AEM-DLFCs and also Direct Formic Acid Fuel Cells (DFAFCs). AEM-DFFCs are also very effective in exploiting the energy content of the fuel. Indeed we have shown that DFFCs energy efficiency is four times the energy efficiency of analogous DEFCs. This point is very important to exploit the technology as the energy efficiency is the key issue for achieving sustainability and the major constraints for systems devoted to massive energy production. Again we have found that fuel composition is essential for the performance. The best power density was obtained by the cell fuelled with 2 M formate plus 2 M KOH, while best delivered energy, fuel utilization and energy efficiency were delivered by cell equipped with 4 M formate plus 4 M KOH. To enhance the ability of palladium to catalyze SOMs oxidation in alkaline environment, we have developed an original electrochemical treatment (Chapter 5). The treatment consisted of the application of a Square-Wave Potential (SWP) to the electrode and resulted in surface roughening and change in the distribution of the crystal surface terminations. Particularly we have found that after SWP an increase of the density of low coordination (Coordination Number < 8) Pd surface atoms occurs. We have found significant activity enhancement (from 4 to 5.6 times as compared to untreated surface) for the oxidation of all the investigated alcohols. Furthermore, FTIR spectra have shown that the reaction products distribution was also affected. Particularly we determined an increased tendency of the SWP treated Pd surface to cleave the C-C bond as compared to the untreated ones. A tailored SWP treatment for enhancing the catalytic activity of platinum was also developed (Chapter 6). The essential reason behind the study is to provide a tool for reducing Pt content in fuel cells when it cannot be completely eliminated. For platinum, it has turned out that the period of the square wave is the most important parameter. The most active platinum surface for Ethanol Oxidation Reaction (EOR) in alkali has been produced with a square wave period of 120 min, while the maximum stability of the catalytic performance has been obtained with the sample produced with a period of 360 min. Via in situ FTIR we have also found that the treated samples limit C-C cleavage as compared to the untreated ones. This suggests that SWP on Pt could provide an effective strategy to minimize the formation of CO, a major poisoning agent for platinum based catalysts. Chapter 7 is devoted to the investigation of the degradation mechanism of palladium electrocatalysts in platinum-free AEM-DLFCs. This is among the main issues still preventing the full exploitation of palladium in DLFCs. We have demonstrated that palladium oxide formation is the major cause for the catalytic performance degradation. We came to this conclusion by combining the information derived from electrochemical measurements and synchrotron light experiments (X-ray Absorption Spectroscopy). X-ray Absorption Near Edge Structure (XANES) spectra of the Pd Kα edge before and after DEFC run have shown that Pd is present in its metallic form in the pristine catalyst, while it is almost completely oxidized after work in an ethanol fed fuel cell. This has enabled us to conclude that to extend the service life of palladium electro-catalysts in alkali, the anode potential has not to exceed 0.7 V. In practice this can be achieved with a simple electronic control of the device. Increasing the operating temperature of fuel cells is an alternative strategy to improve the performance of fuel cells fed with SOMs containing fuels. In chapter 8, palladium has been investigated as a catalyst for ethanol oxidation at intermediate temperatures (> 100 °C) in a pressurized vessel. We have found that the increase of the temperature dramatically enhances the ability of catalyzing EOR in alkali. This fact has been ascribed to the improved adsorption of the hydroxyl species on the palladium surface. The same enhancement has not been observed in acidic environment. A few experiments on the use of tungsten carbide in a cobalt matrix (WC-Co) have also been performed. We have proved that WC-Co does not catalyze significantly the ethanol oxidation reaction in alkaline media, while it does in acidic electrolyte at medium temperature (~50 °C). At larger temperature the stability in acidic environment is not enough to allow a reliable assessment of the catalytic performance. Larger stability has been achieved in alkali where tungsten carbide is a potential candidate for supporting other active phases such as noble metals.
XXVII Ciclo
1987
Santori, Pietro Giovanni. "Investigation of electrocatalysts for anion-exchange membrane fuel cells". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS129.
Texto completo da fonteThis PhD thesis investigates the synthesis, structural characterization and oxygen reduction reaction (ORR) activity of Fe-N-C catalysts and composites of Fe-N-C and manganese oxides, and their application at the cathode of anion exchange membrane fuel cells (AEMFCs). Compared to proton exchange membrane fuel cells (PEMFCs), where platinum is today needed to reach high performance, AEMFCs hold the promise to reach high performance without precious metals in their catalysts. While Fe-N-C catalysts are currently investigated as an alternative to Pt/C for PEMFC cathodes, they suffer from lower activity and lower durability in the acidic medium of PEMFCs. In contrast, both the ORR activity and stability of Fe-N-C catalysts can be expected to be significantly improved in AEMFC.This PhD work demonstrates the high activity, stability and durability in alkaline medium of Fe-N-C catalysts with atomically-dispersed FeNx sites. They were prepared from a mix of ZIF-8 and iron salt, pyrolyzed in argon (Fe0.5-Ar) and then ammonia (Fe0.5-NH3). The activity was measured in a rotating disk electrode (RDE) and in AEMFC, while the stability was measured in RDE and in operando with mass spectroscopy (ICP-MS) coupled with a scanning flow cell, in both acid and alkaline media. The latter setup was used to measure Fe dissolution in operando. It was evidenced that, in oxygenated acid electrolyte, the iron leaching rate of the most active Fe-N-C catalyst (Fe0.5-NH3) is 10 times faster compared to the less active Fe0.5-Ar. This explains the reduced stability of ammonia-treated Fe-N-C catalysts in operating PEMFC. In contrast, in alkaline medium, very little demetallation was observed even for Fe0.5-NH3. This was correlated with almost unchanged activity after load cycling in RDE. The nature of the active sites was investigated with X-ray absorption spectroscopy, including in operando measurements.Then, to minimize the amount of peroxide species during ORR on Fe-N-C, different manganese oxides were synthesized and their activity for ORR and hydrogen peroxide reduction reaction (HPRR) were evaluated, while operando manganese dissolution was investigated with ICP-MS. It was found that even the most stable Mn-oxide, Mn2O3, leached a significant amount of Mn during ORR in alkaline medium. It was further demonstrated that the Mn leaching is associated with hydrogen peroxide produced during ORR. Composites of Fe0.5-NH3 and Mn-oxides were then investigated for ORR and HPRR. Improved selectivity during ORR was observed for all composites relative to Fe0.5-NH3 alone, but the effect was strongest for Mn2O3.Before investigating such catalysts in AEMFC, a study on the compatibility between different ORR and/or hydrogen oxidation reaction catalysts (Pt/C, Fe0.5-NH3, PtRu/C, Pd-CeO2/C) and anion exchange ionomers was performed in RDE in 0.1 M KOH. The study identified issues between the investigated ionomers and catalysts having low metal contents on the carbon support (Fe0.5-NH3, Pd-CeO2/C).The catalyst Fe0.5-NH3 and its composite with Mn2O3 were then investigated in AEMFC with an ethylene-tetrafluoroethylene ionomer. Both cathode catalysts reached a current density of ca 80 mA cm-2 at 0.9 V, with relatively low loading of 1.0-1.5 mg catalyst·cm-2. The peak power density with H2/O2 reached 1 W cm-2 at 60°C with a low density polyethylene AEM and 1.4 W cm-2 with high density polyethylene AEM at 65°C. By comparison, a current density of ca 70 mA cm-2 at 0.9 V and peak power density of 1.5 W cm-2 was reached with 0.45 mgPt cm-2 at the cathode (40 wt% Pt/C) with low density polyethylene AEM at 60°C. A durability test of 100 h at 0.6 A cm-2 in air showed good stability of the Fe0.5-NH3 catalyst.In conclusion, this work highlights the promising application of Fe-N-C catalysts at the cathode of AEMFCs for replacing precious metal catalysts
Matsuoka, Koji. "Studies on direct alcohol fuel cells using anion-exchange membrane". 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144928.
Texto completo da fonte0048
新制・課程博士
博士(工学)
甲第11583号
工博第2529号
新制||工||1344(附属図書館)
23226
UT51-2005-D332
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 垣内 隆, 教授 田中 功
学位規則第4条第1項該当
Livros sobre o assunto "Anion exchange polymer membrane"
An, Liang, e T. S. Zhao, eds. Anion Exchange Membrane Fuel Cells. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7.
Texto completo da fonteV, Sonawane J., e Bhabha Atomic Research Centre, eds. Liquid anion exchanges (LAE) as novel receptors for plutonium pertraction across polymer immobilized liquid membranes. Mumbai: Bhabha Atomic Research Centre, 1999.
Encontre o texto completo da fonteMorgan, P. The immobilisation of anion exchange resins in polymer modified cements. Salford: University of Salford, 1991.
Encontre o texto completo da fonteN, Büchi Felix, Inaba Minoru 1961- e Schmidt Thomas J, eds. Polymer electrolyte fuel cell durability. New York: Springer, 2009.
Encontre o texto completo da fonteUniversity), International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells (4th 2011 Yokohama National. Advanced studies of polymer electrolyte fuel cells: 4th International Summer School : Yokohama National University, September 5th-9th, 2011. Graz: Verlag der Technischen Universität Graz, 2011.
Encontre o texto completo da fontePak, Chin-su. Kochʻe alkʻalli yŏllyo chŏnji rŭl wihan ŭmion kyohwanmak mit chŏnʼgŭk-chonhaejil chŏphapchʻe kaebal =: Development of anion-exchange membranes and membrane-electrode assemblies for solid alkaline fuel cells. [Seoul]: Chisik Kyŏngjebu, 2008.
Encontre o texto completo da fontePak, Chin-su. Kochʻe alkʻalli yŏllyo chŏnji rŭl wihan ŭmion kyohwanmak mit chŏnʼgŭk-chonhaejil chŏphapchʻe kaebal =: Development of anion-exchange membranes and membrane-electrode assemblies for solid alkaline fuel cells. [Seoul]: Chisik Kyŏngjebu, 2008.
Encontre o texto completo da fonteAn, Liang, e T. S. Zhao. Anion Exchange Membrane Fuel Cells: Principles, Materials and Systems. Springer, 2018.
Encontre o texto completo da fonteAn, Liang, e T. S. Zhao. Anion Exchange Membrane Fuel Cells: Principles, Materials and Systems. Springer, 2018.
Encontre o texto completo da fonteEsposito, Richard. Polymer Electrolyte Membrane Fuel Cells and Electrocatalysts. Nova Science Publishers, Incorporated, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Anion exchange polymer membrane"
Vijayakumar, Vijayalekshmi, e Sang Yong Nam. "Recent Advances in Anion Exchange Membranes for Fuel Cell Applications". In Progress in Polymer Research for Biomedical, Energy and Specialty Applications, 229–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003200710-12.
Texto completo da fonteTsai, Tsung-Han, Craig Versek, Michael Thorn, Mark Tuominen e E. Bryan Coughlin. "Block Copolymers Containing Quaternary Benzyl Ammonium Cations for Alkaline Anion Exchange Membrane Fuel Cells (AAEMFC)". In Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells, 253–65. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1096.ch015.
Texto completo da fonteHiga, Mitsuru. "Anion-Exchange Membrane (AEM)". In Encyclopedia of Membranes, 78–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_23.
Texto completo da fonteHiga, Mitsuru. "Anion-Exchange Membrane (AEM)". In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_23-1.
Texto completo da fonteCavaliere, Pasquale. "Anion Exchange Membrane Water Electrolysis". In Water Electrolysis for Hydrogen Production, 287–307. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37780-8_7.
Texto completo da fontePeng, Shengjie. "Anion Exchange Membrane Water Electrolysis". In Electrochemical Hydrogen Production from Water Splitting, 99–146. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_5.
Texto completo da fonteErgozhin, E. E., E. Zh Menligaziev, T. Chukenova, A. K. Chalov e I. K. Abdrakhmanova. "SYNTHESIS AND PROPERTIES OF ANION EXCHANGE MEMBRANES BASED ON EPOXY DERIVATIVES OF DIHYDROXYBENZENES AND AMINOPHENOLS". In Synthetic Polymeric Membranes, editado por Blahoslav Sedláček e Jaroslav Kahovec, 49–54. Berlin, Boston: De Gruyter, 1987. http://dx.doi.org/10.1515/9783110867374-006.
Texto completo da fonteOmasta, Travis J., e William E. Mustain. "Water and Ion Transport in Anion Exchange Membrane Fuel Cells". In Anion Exchange Membrane Fuel Cells, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_1.
Texto completo da fonteLi, Yinshi. "Challenges and Perspectives in Alkaline Direct Ethanol Fuel Cells". In Anion Exchange Membrane Fuel Cells, 325–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_10.
Texto completo da fonteHaan, John L., Omar Muneeb e Jose Estrada. "Electrocatalysts for the Oxidation of Small Organic Molecules in Alkaline Media". In Anion Exchange Membrane Fuel Cells, 33–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Anion exchange polymer membrane"
"Prediction of the conductivity and compatibility of the selected ionic liquids (ILs) with Nafion™ using COSMO-RS". In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-51.
Texto completo da fonteUlbricht, Nicco, Alain Boldini, Chulsung Bae, Thomas Wallmersperger e Maurizio Porfiri. "Experimental characterization of actuation of anion-exchange membranes in salt solution". In Electroactive Polymer Actuators and Devices (EAPAD) XXV, editado por John D. Madden, Iain A. Anderson e Herbert R. Shea. SPIE, 2023. http://dx.doi.org/10.1117/12.2658447.
Texto completo da fonteVona, Maria Luisa Di. "Ionomers and Electrocatalysts for Anion Exchange Membrane Fuel Cells". In The 8th World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2023. http://dx.doi.org/10.11159/icnnfc23.002.
Texto completo da fontePandala, Ronit Kumar, Guillaume Serrela, Frederic Fouda Onanala, Yann Bultel e Pascal Schott. "Performance evaluation of the Anion exchange membrane based Water electrolysis". In 2022 10th International Conference on Systems and Control (ICSC). IEEE, 2022. http://dx.doi.org/10.1109/icsc57768.2022.9993826.
Texto completo da fonteSood, Sumit, Belkacem Ould Bouamama, Jean-Yves Dieulot, Mathieu Bressel, Xiaohong Li, Habib Ullah e Adeline Loh. "Bond Graph based Multiphysic Modelling of Anion Exchange Membrane Water Electrolysis Cell". In 2020 28th Mediterranean Conference on Control and Automation (MED). IEEE, 2020. http://dx.doi.org/10.1109/med48518.2020.9183344.
Texto completo da fonteSaufi, Syed M., e Conan J. Fee. "Batch adsorption of whey protein onto anion exchange mixed matrix membrane chromatography". In 2010 2nd International Conference on Chemical, Biological and Environmental Engineering (ICBEE). IEEE, 2010. http://dx.doi.org/10.1109/icbee.2010.5650595.
Texto completo da fonteTruong, Van Men, e Hsiharng Yang. "Cell Temperature and Reactant Humidification Effects on Anion Exchange Membrane Fuel Cells". In 2019 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW). IEEE, 2019. http://dx.doi.org/10.1109/icce-tw46550.2019.8991712.
Texto completo da fonteWang, Ziming, Qiangfeng Xiao e Zijun Hu. "Efficient anode PtIr catalysts for anion exchange membrane direct ammonia fuel cells". In Eighth International Conference on Energy Materials and Electrical Engineering (ICEMEE 2022), editado por Thanikaivelan Palanisamy e Lim Boon Han. SPIE, 2023. http://dx.doi.org/10.1117/12.2673086.
Texto completo da fonteAo, Bei, Yanan Wei, Xiaofan Hou, Keryn Lian e Jinli Qiao. "Anion conducting chitosan/poly[(3-methyl-1-vinylimidazolium methyl sulfate)-co-(1-vinylcaprolactam)-co-(1-vinylpyrrolidone)] membrane for alkaline anion-exchange membrane fuel cells". In 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/iceesd-17.2017.170.
Texto completo da fonteHuang, Jing, e Amir Faghri. "Comparison of Alkaline Direct Ethanol Fuel Cells With and Without Anion Exchange Membrane". In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6361.
Texto completo da fonteRelatórios de organizações sobre o assunto "Anion exchange polymer membrane"
Kim, Yu, Eun Park, Jannasch Patric, Miyatake Kenji, Bae Chulsung, Noonan Kevin, Fujimoto Cy et al. Aryl Ether-free Polymer Electrolytes for Anion Exchange Membrane Water Electrolysers and Other Electrochemical Devices. Office of Scientific and Technical Information (OSTI), fevereiro de 2024. http://dx.doi.org/10.2172/2377942.
Texto completo da fonteKim, Yu, e Ivana Gonzales. Computationally Assisted Design of Ion-conducting Polymers for Anion Exchange Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), janeiro de 2020. http://dx.doi.org/10.2172/1893651.
Texto completo da fonteKim, Yu, e Ivana Gonzales. Report for computational project w19_ionpolymers (2nd year) Computationally Assisted Design of Ion-conducting Polymers for Anion Exchange Membrane Fuel Cells. Office of Scientific and Technical Information (OSTI), maio de 2021. http://dx.doi.org/10.2172/1781361.
Texto completo da fontePivovar, Bryan, e Yu Kim. 2019 Anion Exchange Membrane Workshop Summary Report. Office of Scientific and Technical Information (OSTI), julho de 2020. http://dx.doi.org/10.2172/1660106.
Texto completo da fonte