Siga este link para ver outros tipos de publicações sobre o tema: Anharmonicitées.

Artigos de revistas sobre o tema "Anharmonicitées"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Anharmonicitées".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Singh, Hempal, Anu Singh, Vinod Ashokan e B. D. Indu B. D. Indu. "Signature of Anharmonicities in High Temperature Superconductors". Indian Journal of Applied Research 3, n.º 4 (1 de outubro de 2011): 35–38. http://dx.doi.org/10.15373/2249555x/apr2013/134.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wu, Junjun, Lu Gem Gao, Wei Ren e Donald G. Truhlar. "Anharmonic kinetics of the cyclopentane reaction with hydroxyl radical". Chemical Science 11, n.º 9 (2020): 2511–23. http://dx.doi.org/10.1039/c9sc05632g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Gastegger, Michael, Jörg Behler e Philipp Marquetand. "Machine learning molecular dynamics for the simulation of infrared spectra". Chemical Science 8, n.º 10 (2017): 6924–35. http://dx.doi.org/10.1039/c7sc02267k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kolesov, Egor A., Mikhail S. Tivanov, Olga V. Korolik, Olesya O. Kapitanova, Hak Dong Cho, Tae Won Kang e Gennady N. Panin. "Phonon anharmonicities in supported graphene". Carbon 141 (janeiro de 2019): 190–97. http://dx.doi.org/10.1016/j.carbon.2018.09.020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Gupta, Anushri, Sanjeev K. Verma, Anita Kumari e B. D. Indu. "Generalized phonon density of states of La2−xSrxCuO4 cuprate superconductor". International Journal of Modern Physics B 33, n.º 28 (10 de novembro de 2019): 1950328. http://dx.doi.org/10.1142/s0217979219503284.

Texto completo da fonte
Resumo:
Many body quantum dynamics of phonons is steadily developed by considering the various effects of anharmonicities, defects (consider as doping or impurity concentration) and electron–phonon interactions in model Hamiltonian (instead of BCS Hamiltonian) for a high-temperature superconductor (HTS). This enables to obtain the expressions for the renormalized phonon spectrum, the renormalized phonon density of states (RPDOS). The RPDOS can be resolved into diagonal and nondiagonal parts where the nondiagonal component is found highly impurity-dependent. Considering the suitable Born–Mayer–Huggins (BMH) interaction potential, the renormalized phonon spectrum, RPDOS and generalized phonon density of states (GPDOS) of the La[Formula: see text]Sr[Formula: see text]CuO4 layered superconductor have been numerically analyzed and it was found that these quantities depend on doping concentration, anharmonicities, and temperature. The results are compared with the inelastic neutron scattering experimental data of GPDOS for La[Formula: see text]Sr[Formula: see text]CuO4 and are found in good agreement. The ratio of deviation in GPDOS to GPDOS at critical temperature ([Formula: see text] K) shows the implicit difference at [Formula: see text]. The impact of defects, anharmonicities, and electron–phonon interactions in the cuprate superconductors virtually modify the scenario of GPDOS and affirm a large number of exotic peaks in the spectrum.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

INDU, B. D. "THEORY OF LATTICE SPECIFIC HEAT OF AN ISOTOPICALLY DISORDERED ANHARMONIC CRYSTAL". International Journal of Modern Physics B 04, n.º 07n08 (junho de 1990): 1379–93. http://dx.doi.org/10.1142/s021797929000067x.

Texto completo da fonte
Resumo:
Expressions are obtained for the phonon density of states (DOS), lattice energy and lattice heat capacity (LHC) of an isotopically disordered anharmonic crystal. The cubic and quartic anharmonicities are taken into account besides both the force constant changes and mass difference caused by the substitutional impurities. The method of double time thermal Green’s Function (GF) is used in the development. It is shown that in the low concentration limit the LHC depends on mass and force constant changes, cubic and quartic anharmonicities and impurity-anharmonicity interactions. At low temperatures the largest contribution is found due to the defects. It is observed that the non-diagonal terms contribute significantly in the lattice energy of isotopically disordered crystal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Fuß, Werner, Evan G. Robertson, Chris Medcraft e Dominique R. T. Appadoo. "Vibrational Anharmonicities and Reactivity of Tetrafluoroethylene". Journal of Physical Chemistry A 118, n.º 29 (15 de julho de 2014): 5391–99. http://dx.doi.org/10.1021/jp500811w.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Massa, Néstor E., e Vólia Lemos. "Intrinsic anharmonicities in theBX42−orthorhombic sublattice". Physical Review B 33, n.º 5 (1 de março de 1986): 3379–83. http://dx.doi.org/10.1103/physrevb.33.3379.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Piepenbring, R., e M. K. Jammari. "Anharmonicities of γ-vibrations in 168Er". Nuclear Physics A 481, n.º 1 (abril de 1988): 81–93. http://dx.doi.org/10.1016/0375-9474(88)90474-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Xiang, Bo, Raphael F. Ribeiro, Adam D. Dunkelberger, Jiaxi Wang, Yingmin Li, Blake S. Simpkins, Jeffrey C. Owrutsky, Joel Yuen-Zhou e Wei Xiong. "Two-dimensional infrared spectroscopy of vibrational polaritons". Proceedings of the National Academy of Sciences 115, n.º 19 (19 de abril de 2018): 4845–50. http://dx.doi.org/10.1073/pnas.1722063115.

Texto completo da fonte
Resumo:
We report experimental 2D infrared (2D IR) spectra of coherent light–matter excitations––molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light–matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Anda, André, Darius Abramavičius e Thorsten Hansen. "Two-dimensional electronic spectroscopy of anharmonic molecular potentials". Physical Chemistry Chemical Physics 20, n.º 3 (2018): 1642–52. http://dx.doi.org/10.1039/c7cp06583c.

Texto completo da fonte
Resumo:
Two-dimensional electronic spectroscopy (2DES) is a powerful tool in the study of coupled electron–phonon dynamics, yet very little is known about how nonlinearities in the electron–phonon coupling, arising from anharmonicities in the nuclear potentials, affect the spectra.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Guo, Xiao, Qiwei Tian, Yongsong Wang, Jinxin Liu, Guiping Jia, Weidong Dou, Fei Song, Lijie Zhang, Zhihui Qin e Han Huang. "Phonon anharmonicities in 7-armchair graphene nanoribbons". Carbon 190 (abril de 2022): 312–18. http://dx.doi.org/10.1016/j.carbon.2022.01.029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Znojil, M. "Singular anharmonicities and the analytic continued fractions". Journal of Mathematical Physics 30, n.º 1 (janeiro de 1989): 23–27. http://dx.doi.org/10.1063/1.528614.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Jammari, M. K., e R. Piepenbring. "Anharmonicities of γ-vibrations in deformed nuclei". Nuclear Physics A 487, n.º 1 (outubro de 1988): 77–91. http://dx.doi.org/10.1016/0375-9474(88)90130-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Shirai, Koun, e Hiroshi Katayama-Yoshida. "Anharmonicities in optical spectra of α-rhombohedral boron". Physica B: Condensed Matter 263-264 (março de 1999): 791–94. http://dx.doi.org/10.1016/s0921-4526(98)01288-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Znojil, Miloslav. "Pairs of anharmonicities and the double delta expansions". Physics Letters A 164, n.º 2 (abril de 1992): 145–48. http://dx.doi.org/10.1016/0375-9601(92)90693-g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Calvo, F., e P. Parneix. "Amplification of Anharmonicities in Multiphoton Vibrational Action Spectra". ChemPhysChem 13, n.º 1 (6 de dezembro de 2011): 212–20. http://dx.doi.org/10.1002/cphc.201100690.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hassanzedeh, Parviz, e Karl K. Irikura. "Inexpensive vibrational anharmonicities from estimated derivatives: Diatomic molecules". Journal of Computational Chemistry 19, n.º 11 (agosto de 1998): 1315–24. http://dx.doi.org/10.1002/(sici)1096-987x(199808)19:11<1315::aid-jcc11>3.0.co;2-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

PAINULI, C. P., B. P. BAHUGUNA e B. D. INDU. "MICROWAVE ATTENUATION IN ISOTOPICALLY DISORDERED ANHARMONIC CRYSTALS". International Journal of Modern Physics B 05, n.º 12 (20 de julho de 1991): 2093–107. http://dx.doi.org/10.1142/s021797929100081x.

Texto completo da fonte
Resumo:
The impurity-anharmonicity interactions, along with anharmonicities, mass and force constant changes have been taken into account to investigate the expressions for microwave attenuation in anharmonic crystals. A remarkable change in the phonon frequency shifts and widths has been reported due to the defect anharmonicity interactions. The usual method of central and non-central force constant parameters has been ignored here and parameter free expressions have been reported.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

ATAULLAH ANSARI, M., VINOD ASHOKAN e B. D. INDU. "PHONON HEAT CONDUCTIVITY OF InSb AND CdS". International Journal of Modern Physics B 25, n.º 10 (20 de abril de 2011): 1409–18. http://dx.doi.org/10.1142/s0217979211058778.

Texto completo da fonte
Resumo:
The lattice thermal conductivity of InSb and CdS has been analyzed on the basis of the most acquiescent Callaway model in the temperature range 2–300.779 K and 2.296–283.565 K. To reinvigorate the effects of phonon anharmonicities, more rigorous expressions for the phonon–phonon interactions, resonance, impurity and interference scattering relaxation times have been introduced to theoretically justify the experimentally observed results. A fairly good agreement between theory and experiments has been presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Abada, A., e D. Vautherin. "Anharmonicities of nuclear vibrations from periodic mean-field orbits". Physical Review C 45, n.º 5 (1 de maio de 1992): 2205–16. http://dx.doi.org/10.1103/physrevc.45.2205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Srivastava, Sunita, e Vishwamittar. "Energies of oscillators with mixed quartic and sextic anharmonicities". Molecular Physics 72, n.º 6 (20 de abril de 1991): 1285–97. http://dx.doi.org/10.1080/00268979100100911.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Durand, J. C., e R. Piepenbring. "Anharmonicities of γ vibrations in odd-mass deformed nuclei". Physical Review C 54, n.º 1 (1 de julho de 1996): 189–200. http://dx.doi.org/10.1103/physrevc.54.189.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Golonzka, O., M. Khalil, N. Demirdöven e A. Tokmakoff. "Vibrational Anharmonicities Revealed by Coherent Two-Dimensional Infrared Spectroscopy". Physical Review Letters 86, n.º 10 (5 de março de 2001): 2154–57. http://dx.doi.org/10.1103/physrevlett.86.2154.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Pathak, Anirban, e Swapan Mandal. "Classical and quantum oscillators of sextic and octic anharmonicities". Physics Letters A 298, n.º 4 (junho de 2002): 259–70. http://dx.doi.org/10.1016/s0375-9601(02)00500-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

SCHOMMERS, W., P. VON BLANCKENHAGEN e C. SYROS. "PHONONS AND NON-LINEAR DYNAMIC EXCITATIONS AT THE SURFACE OF SOLIDS". Modern Physics Letters B 06, n.º 01 (10 de janeiro de 1992): 23–32. http://dx.doi.org/10.1142/s0217984992000053.

Texto completo da fonte
Resumo:
In this paper we report molecular dynamics (MD) results for the surface dynamics of realistic model systems (krypton, lead). It turned out that the layers at the surface perform an unusual center-of-mass motion perpendicular to the surface; this new excitation should be due to the anharmonicities at the surface. The generalized phonon density of states has been studied in the bulk as well as at the surface of the crystal. The MD results are discussed in connection with dynamical-matrix solutions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Mix, Hartmut, Joachim Sauer, Klaus-Peter Schröder e Angela Merkel. "Vibrational properties of surface hydroxyls: Nonempirical model calculations including anharmonicities". Collection of Czechoslovak Chemical Communications 53, n.º 10 (1988): 2191–202. http://dx.doi.org/10.1135/cccc19882191.

Texto completo da fonte
Resumo:
Complete sets of harmonic, semidiagonal cubic as well as diagonal cubic and quartic force constants are reported for the internal coordinates of terminal, ≣SiOH, and bridging, ≣SiOH·Al≣, surface hydroxyls on silica and zeolites. They are obtained by numerical differentiation of analytically calculated gradients of the energy (SCF approximation, 6-31 G* basis set). A GF vibrational analysis is performed and after making a nonlinear transformation of the force constants into normal coordinates the anharmonicity constants are evaluated by perturbation theory. Comparison is made with the D2OH+ ion and the DOH molecule. The calculated anharmonicities of the OH bonds in the systems studied are remarkably constant and vary between -76 and -84 cm-1, only in agreement with the values observed for DOH (-83 cm-1) and surface silanols, ≣SiOH (-90 ± 15 cm-1).
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Mrudul, M. S., Siby Thomas e K. M. Ajith. "Anharmonicities in the temperature-dependent bending rigidity of BC3 monolayer". Journal of Physics and Chemistry of Solids 146 (novembro de 2020): 109574. http://dx.doi.org/10.1016/j.jpcs.2020.109574.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Pathak, Anirban, e Swapan Mandal. "Classical and quantum oscillators of quartic anharmonicities: second-order solution". Physics Letters A 286, n.º 4 (julho de 2001): 261–76. http://dx.doi.org/10.1016/s0375-9601(01)00401-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Beaudet, Yvon, Laurent J. Lewis e Mats Persson. "Surface anharmonicities and disordering on Ni(100) and Ni(110)". Physical Review B 50, n.º 16 (15 de outubro de 1994): 12084–103. http://dx.doi.org/10.1103/physrevb.50.12084.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Sokolov, A. I. "Fluctuations, higher order anharmonicities, and Landau expansion for barium titanate". Physics of the Solid State 51, n.º 2 (fevereiro de 2009): 351–55. http://dx.doi.org/10.1134/s1063783409020255.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Fuß, Werner, Evan G. Robertson, Chris Medcraft e Dominique R. T. Appadoo. "Correction and Addition to “Vibrational Anharmonicities and Reactivity of Tetrafluoroethylene”". Journal of Physical Chemistry A 118, n.º 36 (21 de agosto de 2014): 8009–10. http://dx.doi.org/10.1021/jp507985p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Freund, J. "On the determination of interatomic potential anharmonicities from EXAFS measurements". Physics Letters A 157, n.º 4-5 (julho de 1991): 256–60. http://dx.doi.org/10.1016/0375-9601(91)90062-d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Schriver, Louise, André Schriver, Stefan Peil e Otto Schrems. "Hydrogen-bonded complexes of perfluoro-t-butanol with acetone and nitromethane in low temperature solutions and matrices". Canadian Journal of Chemistry 69, n.º 10 (1 de outubro de 1991): 1520–27. http://dx.doi.org/10.1139/v91-225.

Texto completo da fonte
Resumo:
Infrared spectra are reported for binary complexes between perfluoro-tert-butanol as proton donor and nitromethane and acetone as bases. The complexes have been investigated in low temperature solutions and in cryogenic matrices. The spectra have been evaluated in terms of frequency shifts (ΔVOH), half widths (FWHH) and anharmonicities (κ) caused by the hydrogen bonding of these complexes. The influence of the environment (solvents and solid matrices) as well as temperature on the spectra of the complexes has also been studied and is discussed in detail. Key words: hydrogen bonding, temperature effects, solutions, matrix.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Савотченко, С. Е. "Локализация и трансформация нелинейных возбуждений вблизи границы раздела сред с различными знаками нелинейности". Журнал технической физики 89, n.º 2 (2019): 163. http://dx.doi.org/10.21883/jtf.2019.02.47063.2355.

Texto completo da fonte
Resumo:
AbstractContact states at the interface of nonlinear media with anharmonicities of different signs are considered. A model that represents a boundary-value problem for the nonlinear Schrödinger equation is proposed. Several types of stationary states that depend on energy and describe local states in the vicinity of the interface, localization of nonlinear waves passing through the interface, and transformation of such waves are obtained for the system under study. Dispersion relations that make it possible to determine the energies of such states are derived. Explicit expressions for the energies of stationary states are obtained in the limiting cases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

INDU, B. D. "ENHANCED PHONON DENSITY OF STATES IN IMPURE ANHARMONIC CRYSTALS". Modern Physics Letters B 06, n.º 26 (10 de novembro de 1992): 1665–72. http://dx.doi.org/10.1142/s0217984992001368.

Texto completo da fonte
Resumo:
The expression for the density of states of an isotopically disordered anharmonic crystal is investigated with the help of double-time thermodynamic Green’s functions. The cubic and quartic anharmonicities are taken into account besides the force constant changes and mass differences caused by the substitutional isotopic impurities. It is found that the density of states can be separated into defect, anharmonic and interference terms. The density of states is considerably enhanced due to the defects and impurities present in a real crystal and shows strong temperature and impurity concentration dependences which cannot be obtained by the traditional harmonic theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Paar, V., e N. Pavin. "Regularity–Partial Chaos–Regularity Transition and Overlapped KAM Scenarios in a Conservative System of Two Linearly Coupled Double-Well Oscillators". Modern Physics Letters B 17, n.º 17 (20 de julho de 2003): 941–48. http://dx.doi.org/10.1142/s0217984903006001.

Texto completo da fonte
Resumo:
For linearly coupled double-well oscillators the regularity–partial chaos–regularity transition is found. First, an incomplete KAM scenario develops with increasing energy, from integrable pattern comprising in-phase and out-of-phase small elliptic orbits towards a partial chaos, with a deformed regular island immersed in a chaotic sea. At a critical energy a new deformed island appears as a mirror image. Above the critical energy the inverse KAM scenario leads to gradual destruction of partial chaos and to the appearance of large elliptic orbits which correspond to the large-amplitude limit governed by uncoupled oscillators with cubic anharmonicities.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lee, Myung Won, Massimo Mella e Andrew M. Rappe. "Electronic quantum Monte Carlo calculations of atomic forces, vibrations, and anharmonicities". Journal of Chemical Physics 122, n.º 24 (22 de junho de 2005): 244103. http://dx.doi.org/10.1063/1.1924690.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Muñoz-Caro, Camelia, e Alfonso Niño. "Effect of Anharmonicities on the Thermodynamic Properties of the Water Dimer†". Journal of Physical Chemistry A 101, n.º 22 (maio de 1997): 4128–35. http://dx.doi.org/10.1021/jp9701348.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Hunt, K. L. C. "Vibrational force constants and anharmonicities: Relation to polarizability and hyperpolarizability densities". Journal of Chemical Physics 103, n.º 9 (setembro de 1995): 3552–60. http://dx.doi.org/10.1063/1.470239.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Freeman, G. R., N. H. March e L. von Szentpály. "Universal relation between spectroscopic constants: a chaotic/fractal regime in anharmonicities". Journal of Molecular Structure: THEOCHEM 394, n.º 1 (abril de 1997): 11–13. http://dx.doi.org/10.1016/s0166-1280(96)04879-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Alheit, R., C. Hennig, R. Morgenstern, F. Vedel e G. Werth. "Observation of instabilities in a Paul trap with higher-order anharmonicities". Applied Physics B Lasers and Optics 61, n.º 3 (setembro de 1995): 277–83. http://dx.doi.org/10.1007/bf01082047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Gu, Yingying, e Dmitri Babikov. "On the role of vibrational anharmonicities in a two-qubit system". Journal of Chemical Physics 131, n.º 3 (21 de julho de 2009): 034306. http://dx.doi.org/10.1063/1.3152487.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Costard, Rene, Tobias Tyborski e Benjamin P. Fingerhut. "Anharmonicities and coherent vibrational dynamics of phosphate ions in bulk H2O". Physical Chemistry Chemical Physics 17, n.º 44 (2015): 29906–17. http://dx.doi.org/10.1039/c5cp04502a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Volpe, C., F. Catara, Ph Chomaz, M. V. Andrés e E. G. Lanza. "Anharmonicities and non-linearities in the excitation of double giant resonances". Nuclear Physics A 589, n.º 3 (julho de 1995): 521–34. http://dx.doi.org/10.1016/0375-9474(95)00195-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Bansal, Meena, Sunita Srivastava, Mamta e Vishwamittar. "Energy eigenvalues for double-well oscillators with mixed cubic—quartic anharmonicities". Chemical Physics Letters 195, n.º 5-6 (julho de 1992): 505–8. http://dx.doi.org/10.1016/0009-2614(92)85552-l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

De Almeida, Wagner B., e Alan Hinchliffe. "Mechanical and electrical anharmonicities in the hydrogen cyanide hydrogen-bonded clusters". Journal of Molecular Structure: THEOCHEM 204 (janeiro de 1990): 153–69. http://dx.doi.org/10.1016/0166-1280(90)85070-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Soulayman, S. Sh. "Theoretical Melting Curves of Alkali Halides". Zeitschrift für Naturforschung A 47, n.º 6 (1 de junho de 1992): 753–60. http://dx.doi.org/10.1515/zna-1992-0606.

Texto completo da fonte
Resumo:
AbstractAn analysis of the melting curves of alkali halides is given. The study is based on the Improved Unsymmetrized Self-Consistent Field Method (IUSCFM) for strongly anharmonic crystals with complex lattice and the energy, entropy and Ross’s criterions in calculating the melting curves of alkali halides. The anharmonicities up to sixth order have been taken into consideration. The energy criterion was proven to be the most correct one along the melting curves of the high pressure modification (CsCl structure) while the entropy and Ross's criterions lead to a little better agreement with experiment than the energy criterion when dealing with rocksalt structure. Calculations of the melting curves of KCl and CsCl are compared with the experimental results.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

CHEN, L. Y., e N. J. M. HORING. "STUDY OF LENNARD-JONES CLUSTERS: EFFECTS OF ANHARMONICITIES FAR FROM SADDLE POINTS". International Journal of High Speed Electronics and Systems 18, n.º 01 (março de 2008): 119–26. http://dx.doi.org/10.1142/s0129156408005199.

Texto completo da fonte
Resumo:
We study the transition pathways of a Lennard-Jones cluster of seven particles in three dimensions. Low lying saddle points of the LJ cluster, which can be reached directly from a minimum without passing through another minimum, are identified without any presumption of their characteristics, nor of the product states they lead to. The probabilities are computed for paths going from a given minimum to the surrounding saddle points. These probabilities are directly related to prefactors in the rate formula. This determination of the rate prefactors includes all anharmonicities, near or far from saddle points, which are pertinent in the very sophisticated energy landscape of LJ clusters and in many other complex systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Ashokan, Vinod, e B. D. Indu. "Anharmonic phonon–electron effects on phonon density of states in La2−xSrxCuO4". Modern Physics Letters B 29, n.º 29 (25 de outubro de 2015): 1550177. http://dx.doi.org/10.1142/s0217984915501778.

Texto completo da fonte
Resumo:
In the present work, the phonon density of states (PDOS) for [Formula: see text] crystal is investigated by using the double time thermodynamic Green’s function method via a non-perturbative approach. A newly formulated Hamiltonian is considered for the lattice dynamics of phonon, which includes the effects of electron–phonon interactions, lattice anharmonicities and the interacting isotopic impurities. The automated emergence of pairons and [Formula: see text] wave pairing mechanism appears as a salient features of the theory. The PDOS is found to be dependent on temperature, impurity concentration, electron–phonon coupling coefficient and renormalized frequencies, and the numerical investigations on PDOS exhibits fairly good agreements with the inelastic neutron scattering experimental observations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia