Artigos de revistas sobre o tema "Analysis of encrypted network flow"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Analysis of encrypted network flow".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yan, Xiaodan. "Deep Learning-Based Efficient Analysis for Encrypted Traffic". Applied Sciences 13, n.º 21 (27 de outubro de 2023): 11776. http://dx.doi.org/10.3390/app132111776.
Texto completo da fonteJiang, Ziyu. "Bidirectional Flow-Based Image Representation Method for Detecting Network Traffic Service Categories". Highlights in Science, Engineering and Technology 85 (13 de março de 2024): 89–95. http://dx.doi.org/10.54097/mwyge502.
Texto completo da fonteMa, Chencheng, Xuehui Du e Lifeng Cao. "Improved KNN Algorithm for Fine-Grained Classification of Encrypted Network Flow". Electronics 9, n.º 2 (13 de fevereiro de 2020): 324. http://dx.doi.org/10.3390/electronics9020324.
Texto completo da fonteMeghdouri, Fares, Tanja Zseby e Félix Iglesias. "Analysis of Lightweight Feature Vectors for Attack Detection in Network Traffic". Applied Sciences 8, n.º 11 (9 de novembro de 2018): 2196. http://dx.doi.org/10.3390/app8112196.
Texto completo da fonteAfzal, Asmara, Mehdi Hussain, Shahzad Saleem, M. Khuram Shahzad, Anthony T. S. Ho e Ki-Hyun Jung. "Encrypted Network Traffic Analysis of Secure Instant Messaging Application: A Case Study of Signal Messenger App". Applied Sciences 11, n.º 17 (24 de agosto de 2021): 7789. http://dx.doi.org/10.3390/app11177789.
Texto completo da fonteOh, Chaeyeon, Joonseo Ha e Heejun Roh. "A Survey on TLS-Encrypted Malware Network Traffic Analysis Applicable to Security Operations Centers". Applied Sciences 12, n.º 1 (24 de dezembro de 2021): 155. http://dx.doi.org/10.3390/app12010155.
Texto completo da fonteHaywood, Gregor Tamati, e Saleem Noel Bhatti. "Defence against Side-Channel Attacks for Encrypted Network Communication Using Multiple Paths". Cryptography 8, n.º 2 (28 de maio de 2024): 22. http://dx.doi.org/10.3390/cryptography8020022.
Texto completo da fonteHu, Xinyi, Chunxiang Gu, Yihang Chen e Fushan Wei. "CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Training Method". Sensors 21, n.º 24 (9 de dezembro de 2021): 8231. http://dx.doi.org/10.3390/s21248231.
Texto completo da fonteVizitiu, Anamaria, Cosmin-Ioan Nita, Radu Miron Toev, Tudor Suditu, Constantin Suciu e Lucian Mihai Itu. "Framework for Privacy-Preserving Wearable Health Data Analysis: Proof-of-Concept Study for Atrial Fibrillation Detection". Applied Sciences 11, n.º 19 (28 de setembro de 2021): 9049. http://dx.doi.org/10.3390/app11199049.
Texto completo da fonteChoudhary, Swapna, e Sanjay Dorle. "Secured SDN Based Blockchain: An Architecture to Improve the Security of VANET". International journal of electrical and computer engineering systems 13, n.º 2 (28 de fevereiro de 2022): 145–53. http://dx.doi.org/10.32985/ijeces.13.2.7.
Texto completo da fonteDemertzis, Konstantinos, Panayiotis Kikiras, Nikos Tziritas, Salvador Sanchez e Lazaros Iliadis. "The Next Generation Cognitive Security Operations Center: Network Flow Forensics Using Cybersecurity Intelligence". Big Data and Cognitive Computing 2, n.º 4 (22 de novembro de 2018): 35. http://dx.doi.org/10.3390/bdcc2040035.
Texto completo da fonteLienkov, S. V., V. M. Dzhuliy e I. V. Muliar. "METHOD OF CLASSIFICATION OF PSEUDO-RANDOM SEQUENCES OF COMPRESSED AND ENCRYPTED DATA TO PREVENT INFORMATION LEAKAGE". Collection of scientific works of the Military Institute of Kyiv National Taras Shevchenko University, n.º 82 (2024): 77–93. http://dx.doi.org/10.17721/2519-481x/2024/82-09.
Texto completo da fonteHe, Gaofeng, Bingfeng Xu e Haiting Zhu. "AppFA: A Novel Approach to Detect Malicious Android Applications on the Network". Security and Communication Networks 2018 (17 de abril de 2018): 1–15. http://dx.doi.org/10.1155/2018/2854728.
Texto completo da fonteRen, Guoqiang, Guang Cheng e Nan Fu. "Accurate Encrypted Malicious Traffic Identification via Traffic Interaction Pattern Using Graph Convolutional Network". Applied Sciences 13, n.º 3 (23 de janeiro de 2023): 1483. http://dx.doi.org/10.3390/app13031483.
Texto completo da fonteSubach, Ihor, Dmytro Sharadkin e Ihor Yakoviv. "APPLICATION OF METRIC METHODS OF HISTOGRAM COMPARISON FOR DETECTING CHANGES IN ENCRYPTED NETWORK TRAFFIC". Cybersecurity: Education, Science, Technique 1, n.º 25 (2024): 434–48. http://dx.doi.org/10.28925/2663-4023.2024.25.434448.
Texto completo da fonteChaddad, Louma, Ali Chehab, Imad H. Elhajj e Ayman Kayssi. "Optimal Packet Camouflage Against Traffic Analysis". ACM Transactions on Privacy and Security 24, n.º 3 (31 de agosto de 2021): 1–23. http://dx.doi.org/10.1145/3442697.
Texto completo da fonteLapshichyov, Vitaly, e Oleg Makarevich. "Identification of the "Tor" Network https-Connection Version tls v1.3". Voprosy kiberbezopasnosti, n.º 6(40) (2020): 57–62. http://dx.doi.org/10.21681/2311-3456-2020-06-57-62.
Texto completo da fonteSelvaraj, Prabha, Vijay Kumar Burugari, S. Gopikrishnan, Abdullah Alourani , Gautam Srivastava e Mohamed Baza. "An Enhanced and Secure Trust-Aware Improved GSO for Encrypted Data Sharing in the Internet of Things". Applied Sciences 13, n.º 2 (7 de janeiro de 2023): 831. http://dx.doi.org/10.3390/app13020831.
Texto completo da fonteSingh, Purushottam, Sandip Dutta e Prashant Pranav. "Optimizing GANs for Cryptography: The Role and Impact of Activation Functions in Neural Layers Assessing the Cryptographic Strength". Applied Sciences 14, n.º 6 (12 de março de 2024): 2379. http://dx.doi.org/10.3390/app14062379.
Texto completo da fonteWang, Wei, Cheng Sheng Sun e Jia Ning Ye. "A Method for TLS Malicious Traffic Identification Based on Machine Learning". Advances in Science and Technology 105 (abril de 2021): 291–301. http://dx.doi.org/10.4028/www.scientific.net/ast.105.291.
Texto completo da fonteSalim, Mikail Mohammed, Inyeung Kim, Umarov Doniyor, Changhoon Lee e Jong Hyuk Park. "Homomorphic Encryption Based Privacy-Preservation for IoMT". Applied Sciences 11, n.º 18 (20 de setembro de 2021): 8757. http://dx.doi.org/10.3390/app11188757.
Texto completo da fonteLi, Mengyao, Xianwen Fang e Asimeng Ernest. "A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition". Mathematics 11, n.º 15 (25 de julho de 2023): 3274. http://dx.doi.org/10.3390/math11153274.
Texto completo da fonteGao, Shu-Yang, Xiao-Hong Li e Mao-De Ma. "A Malicious Behavior Awareness and Defense Countermeasure Based on LoRaWAN Protocol". Sensors 19, n.º 23 (22 de novembro de 2019): 5122. http://dx.doi.org/10.3390/s19235122.
Texto completo da fonteSattar, Kanza Abdul, Takreem Haider, Umar Hayat e Miguel D. Bustamante. "An Efficient and Secure Cryptographic Algorithm Using Elliptic Curves and Max-Plus Algebra-Based Wavelet Transform". Applied Sciences 13, n.º 14 (20 de julho de 2023): 8385. http://dx.doi.org/10.3390/app13148385.
Texto completo da fontePachilakis, Michalis, Panagiotis Papadopoulos, Nikolaos Laoutaris, Evangelos P. Markatos e Nicolas Kourtellis. "YourAdvalue". ACM SIGMETRICS Performance Evaluation Review 50, n.º 1 (20 de junho de 2022): 41–42. http://dx.doi.org/10.1145/3547353.3522629.
Texto completo da fonteWang, Guanyu, e Yijun Gu. "Multi-Task Scenario Encrypted Traffic Classification and Parameter Analysis". Sensors 24, n.º 10 (12 de maio de 2024): 3078. http://dx.doi.org/10.3390/s24103078.
Texto completo da fontePachilakis, Michalis, Panagiotis Papadopoulos, Nikolaos Laoutaris, Evangelos P. Markatos e Nicolas Kourtellis. "YourAdvalue: Measuring Advertising Price Dynamics without Bankrupting User Privacy". Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, n.º 3 (14 de dezembro de 2021): 1–26. http://dx.doi.org/10.1145/3491044.
Texto completo da fonteAlwhbi, Ibrahim A., Cliff C. Zou e Reem N. Alharbi. "Encrypted Network Traffic Analysis and Classification Utilizing Machine Learning". Sensors 24, n.º 11 (29 de maio de 2024): 3509. http://dx.doi.org/10.3390/s24113509.
Texto completo da fonteLi, Minghui, Zhendong Wu, Keming Chen e Wenhai Wang. "Adversarial Malicious Encrypted Traffic Detection Based on Refined Session Analysis". Symmetry 14, n.º 11 (6 de novembro de 2022): 2329. http://dx.doi.org/10.3390/sym14112329.
Texto completo da fonteJung, In-Su, Yu-Rae Song, Lelisa Adeba Jilcha, Deuk-Hun Kim, Sun-Young Im, Shin-Woo Shim, Young-Hwan Kim e Jin Kwak. "Enhanced Encrypted Traffic Analysis Leveraging Graph Neural Networks and Optimized Feature Dimensionality Reduction". Symmetry 16, n.º 6 (12 de junho de 2024): 733. http://dx.doi.org/10.3390/sym16060733.
Texto completo da fonteCao, Jie, Xing-Liang Yuan, Ying Cui, Jia-Cheng Fan e Chin-Ling Chen. "A VPN-Encrypted Traffic Identification Method Based on Ensemble Learning". Applied Sciences 12, n.º 13 (24 de junho de 2022): 6434. http://dx.doi.org/10.3390/app12136434.
Texto completo da fonteJeng, Tzung-Han, Wen-Yang Luo, Chuan-Chiang Huang, Chien-Chih Chen, Kuang-Hung Chang e Yi-Ming Chen. "Cloud Computing for Malicious Encrypted Traffic Analysis and Collaboration". International Journal of Grid and High Performance Computing 13, n.º 3 (julho de 2021): 12–29. http://dx.doi.org/10.4018/ijghpc.2021070102.
Texto completo da fontePathmaperuma, Madushi H., Yogachandran Rahulamathavan, Safak Dogan e Ahmet Kondoz. "CNN for User Activity Detection Using Encrypted In-App Mobile Data". Future Internet 14, n.º 2 (21 de fevereiro de 2022): 67. http://dx.doi.org/10.3390/fi14020067.
Texto completo da fonteZheng, Juan, Zhiyong Zeng e Tao Feng. "GCN-ETA: High-Efficiency Encrypted Malicious Traffic Detection". Security and Communication Networks 2022 (22 de janeiro de 2022): 1–11. http://dx.doi.org/10.1155/2022/4274139.
Texto completo da fonteTaylor, Vincent F., Riccardo Spolaor, Mauro Conti e Ivan Martinovic. "Robust Smartphone App Identification via Encrypted Network Traffic Analysis". IEEE Transactions on Information Forensics and Security 13, n.º 1 (janeiro de 2018): 63–78. http://dx.doi.org/10.1109/tifs.2017.2737970.
Texto completo da fonteKaraçay, Leyli, Erkay Savaş e Halit Alptekin. "Intrusion Detection Over Encrypted Network Data". Computer Journal 63, n.º 4 (17 de novembro de 2019): 604–19. http://dx.doi.org/10.1093/comjnl/bxz111.
Texto completo da fonteYang, Xiaoqing, Niwat Angkawisittpan e Xinyue Feng. "Analysis of an enhanced random forest algorithm for identifying encrypted network traffic". EUREKA: Physics and Engineering, n.º 5 (10 de setembro de 2024): 201–12. http://dx.doi.org/10.21303/2461-4262.2024.003372.
Texto completo da fonteFischer, Andreas, Benny Fuhry, Jörn Kußmaul, Jonas Janneck, Florian Kerschbaum e Eric Bodden. "Computation on Encrypted Data Using Dataflow Authentication". ACM Transactions on Privacy and Security 25, n.º 3 (31 de agosto de 2022): 1–36. http://dx.doi.org/10.1145/3513005.
Texto completo da fonteXu, Guoliang, Ming Xu, Yunzhi Chen e Jiaqi Zhao. "A Mobile Application-Classifying Method Based on a Graph Attention Network from Encrypted Network Traffic". Electronics 12, n.º 10 (20 de maio de 2023): 2313. http://dx.doi.org/10.3390/electronics12102313.
Texto completo da fonteHuang, Yung-Fa, Chuan-Bi Lin, Chien-Min Chung e Ching-Mu Chen. "Research on QoS Classification of Network Encrypted Traffic Behavior Based on Machine Learning". Electronics 10, n.º 12 (8 de junho de 2021): 1376. http://dx.doi.org/10.3390/electronics10121376.
Texto completo da fonteDeri, Luca, e Daniele Sartiano. "Using DPI and Statistical Analysis in Encrypted Network Traffic Monitoring". International Journal for Information Security Research 10, n.º 1 (30 de dezembro de 2020): 932–43. http://dx.doi.org/10.20533/ijisr.2042.4639.2020.0107.
Texto completo da fontePotter, Bruce. "Network flow analysis". Network Security 2007, n.º 12 (dezembro de 2007): 18–19. http://dx.doi.org/10.1016/s1353-4858(07)70105-8.
Texto completo da fonteDai, Xianlong, Guang Cheng, Ziyang Yu, Ruixing Zhu e Yali Yuan. "MSLCFinder: An Algorithm in Limited Resources Environment for Finding Top-k Elephant Flows". Applied Sciences 13, n.º 1 (31 de dezembro de 2022): 575. http://dx.doi.org/10.3390/app13010575.
Texto completo da fonteChernov, Pavel, e Aleksander Shkaraputa. "Modification of the algorithm based on the Feistel network by adding an element of randomness into the encryption key". Вестник Пермского университета. Математика. Механика. Информатика, n.º 1(52) (2021): 81–88. http://dx.doi.org/10.17072/1993-0550-2021-1-81-88.
Texto completo da fontePark, Jee-Tae, Chang-Yui Shin, Ui-Jun Baek e Myung-Sup Kim. "Fast and Accurate Multi-Task Learning for Encrypted Network Traffic Classification". Applied Sciences 14, n.º 7 (5 de abril de 2024): 3073. http://dx.doi.org/10.3390/app14073073.
Texto completo da fonteBaldini, Gianmarco, José L. Hernandez-Ramos, Slawomir Nowak, Ricardo Neisse e Mateusz Nowak. "Mitigation of Privacy Threats due to Encrypted Traffic Analysis through a Policy-Based Framework and MUD Profiles". Symmetry 12, n.º 9 (22 de setembro de 2020): 1576. http://dx.doi.org/10.3390/sym12091576.
Texto completo da fonteGuo, Maohua, e Jinlong Fei. "Website Fingerprinting Attacks Based on Homology Analysis". Security and Communication Networks 2021 (4 de outubro de 2021): 1–14. http://dx.doi.org/10.1155/2021/6070451.
Texto completo da fonteGuo, Maohua, e Jinlong Fei. "Website Fingerprinting Attacks Based on Homology Analysis". Security and Communication Networks 2021 (4 de outubro de 2021): 1–14. http://dx.doi.org/10.1155/2021/6070451.
Texto completo da fonteLiu, Xinlei. "Identification of Encrypted Traffic Using Advanced Mathematical Modeling and Computational Intelligence". Mathematical Problems in Engineering 2022 (22 de agosto de 2022): 1–10. http://dx.doi.org/10.1155/2022/1419804.
Texto completo da fontePapadogiannaki, Eva, e Sotiris Ioannidis. "A Survey on Encrypted Network Traffic Analysis Applications, Techniques, and Countermeasures". ACM Computing Surveys 54, n.º 6 (julho de 2021): 1–35. http://dx.doi.org/10.1145/3457904.
Texto completo da fonte