Literatura científica selecionada sobre o tema "Analogie de Reynolds"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Analogie de Reynolds".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Analogie de Reynolds"
Ghosh, Bikramaditya, Krishna M.C., Shrikanth Rao, Emira Kozarević e Rahul Kumar Pandey. "Predictability and herding of bourse volatility: an econophysics analogue". Investment Management and Financial Innovations 15, n.º 2 (25 de junho de 2018): 317–26. http://dx.doi.org/10.21511/imfi.15(2).2018.28.
Texto completo da fontede Roode, Stephan R., Peter G. Duynkerke e A. Pier Siebesma. "Analogies between Mass-Flux and Reynolds-Averaged Equations". Journal of the Atmospheric Sciences 57, n.º 10 (maio de 2000): 1585–98. http://dx.doi.org/10.1175/1520-0469(2000)057<1585:abmfar>2.0.co;2.
Texto completo da fonteDeckelman, Steven, Jennifer Graetz e Tyler Russell. "A multiplicative analogue of the Reynolds operator and construction of invariants". Rocky Mountain Journal of Mathematics 45, n.º 4 (agosto de 2015): 1107–18. http://dx.doi.org/10.1216/rmj-2015-45-4-1107.
Texto completo da fonteGaviglio, J. "Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer". International Journal of Heat and Mass Transfer 30, n.º 5 (maio de 1987): 911–26. http://dx.doi.org/10.1016/0017-9310(87)90010-x.
Texto completo da fonteMcKeon, B. J., e J. F. Morrison. "Asymptotic scaling in turbulent pipe flow". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 365, n.º 1852 (16 de janeiro de 2007): 771–87. http://dx.doi.org/10.1098/rsta.2006.1945.
Texto completo da fonteRadkevich, E. V., E. A. Lukashev e O. A. Vasil’eva. "Hydrodynamic instabilities and nonequilibrium phase transitions". Доклады Академии наук 486, n.º 5 (20 de junho de 2019): 537–42. http://dx.doi.org/10.31857/s0869-56524865537-542.
Texto completo da fonteCHILDRESS, STEPHEN, SAVERIO E. SPAGNOLIE e TADASHI TOKIEDA. "A bug on a raft: recoil locomotion in a viscous fluid". Journal of Fluid Mechanics 669 (12 de janeiro de 2011): 527–56. http://dx.doi.org/10.1017/s002211201000515x.
Texto completo da fonteZhao, Shuo, Xiaoping Chen, Yuting Yang e Dengsong Huang. "Effects of Viscosity Law on High-Temperature Supersonic Turbulent Channel Flow for Chemical Equilibrium". Processes 12, n.º 2 (24 de janeiro de 2024): 256. http://dx.doi.org/10.3390/pr12020256.
Texto completo da fonteYim, Eunok, e Paul Billant. "Analogies and differences between the stability of an isolated pancake vortex and a columnar vortex in stratified fluid". Journal of Fluid Mechanics 796 (11 de maio de 2016): 732–66. http://dx.doi.org/10.1017/jfm.2016.248.
Texto completo da fonteJIMÉNEZ, JAVIER, SERGIO HOYAS, MARK P. SIMENS e YOSHINORI MIZUNO. "Turbulent boundary layers and channels at moderate Reynolds numbers". Journal of Fluid Mechanics 657 (2 de junho de 2010): 335–60. http://dx.doi.org/10.1017/s0022112010001370.
Texto completo da fonteTeses / dissertações sobre o assunto "Analogie de Reynolds"
Ben, Nasr Ouissem. "Numerical simulations of supersonic turbulent wall-bounded flows". Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-01059805.
Texto completo da fonteCelep, Muhittin. "Τransitiοn dans les cοuches limites supersοniques : simulatiοns numériques directes et cοntrôle par stries". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR15.
Texto completo da fonteIn high-speed flows, elevated viscous drag and thermal loads are inherent outcomes over aerodynamic bodies. These effects escalate substantially during the transition phase when the boundary layer becomes turbulent. To mitigate potential mechanical damage and fatigue-related failures, thermal protection systems are integrated into vehicles, adding complexity to the technical and economic aspects of design. The solution lies in gaining a comprehensive understanding of transition mechanisms and developing control systems to prolong laminar boundary layer along the vehicle’s surface. Numerous active and passive control techniques can be employed for transition control, with the streak employment method emerging as a particularly promising approach. This method involves generating narrowly spaced streaks in the spanwise direction, creating alternating high and low-speed regions in the flow field. Although the method has only recently been tested in supersonic flows, demonstrating its effectiveness in delaying transition, its suitability needs to be assessed further. In this research work, direct numerical simulations are performed in supersonic and near-hypersonic regimes. Streaks are introduced through a blowing/suction strip placed at the wall prior to that of the perturbation which is used to trigger transition in a “controlled” fashion, forced by a single frequency and wavenumber disturbance. The investigation at Mach 2.0 confirms that streaks with five times the fundamental wavenumber are most beneficial for transition control. Additionally, cooling enhances the method’s effectiveness, while heating severely deteriorates the capability of control streaks. The isothermal wall condition does not alter the comparable stabilizing impact of the mean flow deformation (MFD) and the 3-D part of the control at Mach 2.0. However, at Mach 4.5, both the type of instability and the characteristics of the streaks change significantly. The stabilizing impact of the MFD becomes nearly absent, and the 3-D part of the control predominates, with the characteristics of the streaks no longer considered independent of their initial disturbance amplitude
Reynolds, York [Verfasser]. "Singen und Kämpfen : die Kunst des klassischen Gesangs und die Kunst des waffenlosen Vollkontakt-Nahkampfstils Wing Tsun Kuen im Vergleich ihrer Körpertechniken im Hinblick auf ihre Analogien und einer gemeinsamen holistisch-generischen Tiefenstruktur / von York Reynolds". 2007. http://d-nb.info/986408700/34.
Texto completo da fonteLivros sobre o assunto "Analogie de Reynolds"
R, Lang Peter, e Lombargo Frank S, eds. Atmospheric turbulence, meteorological modeling, and aerodynamics. Hauppauge, NY: Nova Science Publishers, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Analogie de Reynolds"
Avdeev, Alexander A. "Reynolds Analogy". In Mathematical Engineering, 417–66. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29288-5_11.
Texto completo da fonteSimonson, J. R. "Forced convection: Reynolds analogy and dimensional analysis". In Engineering Heat Transfer, 101–23. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-19351-6_7.
Texto completo da fonteChoi, K. S. "Breakdown of the Reynolds Analogy over Drag-Reducing Riblets Surface". In Advances in Turbulence IV, 149–54. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1689-3_25.
Texto completo da fonteKelly, G. M., J. M. Simmons e A. Paull. "Skin Friction Measurements and Reynolds Analogy in a Hypersonic Boundary Layer". In Shock Waves @ Marseille I, 299–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78829-1_48.
Texto completo da fonteSaha, Sujoy Kumar, Hrishiraj Ranjan, Madhu Sruthi Emani e Anand Kumar Bharti. "Numerical Simulation of Integral Roughness, Laminar Flow in Tubes with Roughness and Reynolds Analogy for Heat and Momentum Transfer". In Insert Devices and Integral Roughness in Heat Transfer Enhancement, 99–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20776-2_5.
Texto completo da fonteBurmeister, L. C. "Reynolds analogy for mass transfer". In Experiments in Heat Transfer and Thermodynamics, 49–53. Cambridge University Press, 1994. http://dx.doi.org/10.1017/cbo9780511608346.011.
Texto completo da fonteReynolds, Philip L. "Conjugal and Nuptial Symbolism in Medieval Christian Thought". In The Symbolism of Marriage in Early Christianity and the Latin Middle Ages. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2019. http://dx.doi.org/10.5117/9789462985919_ch02.
Texto completo da fonteRout, Siddharth. "Early Advancements in Turbulence-Generated Noise Modelling: A Review". In Boundary Layer Flows - Advances in Modelling and Simulation [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002433.
Texto completo da fonteWilliams, Howard. "Beowulf and Archaeology: Megaliths Imagined and Encountered in Early Medieval Europe". In The Lives of Prehistoric Monuments in Iron Age, Roman, and Medieval Europe. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780198724605.003.0012.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Analogie de Reynolds"
Jiang, Lei-Yong, e Ian Campbell. "Reynolds Analog in Combustor Modeling". In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27017.
Texto completo da fonteAbramov, Alexander, e Alexander Butkovskii. "Extended Reynolds analogy for the rarefied Rayleigh problem: Similarity parameters". In 31ST INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD31. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119671.
Texto completo da fonteForooghi, Pourya, Franco Magagnato e Bettina Frohnapfel. "REYNOLDS ANALOGY IN TURBULENT FLOWS OVER ROUGH WALLS - A DNS INVESTIGATION". In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.cov.021429.
Texto completo da fontePolkowski, Janusz W. "An Influence of the Thickness of a Laminar Sublayer and Mixing Length Model on the Skin Friction and Heat Transfer in the Boundary Layer Flow". In ASME 1987 International Gas Turbine Conference and Exhibition. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/87-gt-68.
Texto completo da fonteDe Maio, M. "DNS of momentum and heat transfer inside rough pipes". In Aerospace Science and Engineering. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902677-7.
Texto completo da fonteSom, Abhijit. "Generalized Reynolds Analogy: An Engineering Prospective of Thermo-Fluid Physics for Heat Exchanger Design". In ASME 2021 Power Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/power2021-65820.
Texto completo da fonteGuerras Colo´n, Israel, Sandra Velarde-Sua´rez, Rafael Ballesteros-Tajadura, Jesu´s Manuel Ferna´ndez Oro e Jose´ Gonza´lez. "Noise Prediction in HVAC Squirrel-Cage Fans by Unsteady Reynolds Navier-Stokes Computation". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-23022.
Texto completo da fonteVelarde-Suárez, Sandra, Rafael Ballesteros-Tajadura, Jesús Manuel Fernández Oro e José González. "Noise Prediction in HVAC Squirrel-Cage Fans by Unsteady Reynolds Navier-Stokes Computation". In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72502.
Texto completo da fonteKhalatov, Artem, e Vitaliy Onishchenko. "Heat Transfer and Surface Friction Downstream of a Dual Array of Dimples of a Different Shape". In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50022.
Texto completo da fonteZhao, Zhiqi, Lei Luo, Xun Zhou e Songtao Wang. "Effect of Coolant Mass Flow Rate of Dirt Purge Hole on Heat Transfer and Flow Characteristics at a Turbine Blade Tip Underside". In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76156.
Texto completo da fonte