Literatura científica selecionada sobre o tema "Amplification du signal (chimie)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Amplification du signal (chimie)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Amplification du signal (chimie)"
Scrimin, Paolo, e Leonard J. Prins. "Sensing through signal amplification". Chemical Society Reviews 40, n.º 9 (2011): 4488. http://dx.doi.org/10.1039/c1cs15024c.
Texto completo da fonteUrdea, Mickey S. "Branched DNA Signal Amplification". Nature Biotechnology 12, n.º 9 (setembro de 1994): 926–28. http://dx.doi.org/10.1038/nbt0994-926.
Texto completo da fonteShibata, T., e K. Fujimoto. "Noisy signal amplification in ultrasensitive signal transduction". Proceedings of the National Academy of Sciences 102, n.º 2 (29 de dezembro de 2004): 331–36. http://dx.doi.org/10.1073/pnas.0403350102.
Texto completo da fonteNallur, G. "Signal amplification by rolling circle amplification on DNA microarrays". Nucleic Acids Research 29, n.º 23 (1 de dezembro de 2001): 118e—118. http://dx.doi.org/10.1093/nar/29.23.e118.
Texto completo da fontePai, Supriya, Ana Roberts e Andrew D. Ellington. "Aptamer amplification: divide and signal". Expert Opinion on Medical Diagnostics 2, n.º 12 (19 de novembro de 2008): 1333–46. http://dx.doi.org/10.1517/17530050802562016.
Texto completo da fonteBijnen, F. G. C., J. v. Dongen, J. Reuss e F. J. M. Harren. "Thermoacoustic amplification of photoacoustic signal". Review of Scientific Instruments 67, n.º 6 (junho de 1996): 2317–24. http://dx.doi.org/10.1063/1.1146939.
Texto completo da fonteZhu, Lei, e Eric V. Anslyn. "Signal Amplification by Allosteric Catalysis". Angewandte Chemie International Edition 45, n.º 8 (13 de fevereiro de 2006): 1190–96. http://dx.doi.org/10.1002/anie.200501476.
Texto completo da fonteDailey, James M., Anjali Agarwal, Colin J. McKinstrie e Paul Toliver. "Optical Signal Filtering Using Phase-Sensitive Amplification and De-Amplification". IEEE Photonics Technology Letters 28, n.º 16 (15 de agosto de 2016): 1743–46. http://dx.doi.org/10.1109/lpt.2016.2566925.
Texto completo da fonteShibata, T., e K. Fujimoto. "2P167 Noisy signal amplification in ultrasensitive signal transduction network". Seibutsu Butsuri 44, supplement (2004): S151. http://dx.doi.org/10.2142/biophys.44.s151_3.
Texto completo da fonteBrooks, Adam D., Kimy Yeung, Gregory G. Lewis e Scott T. Phillips. "A strategy for minimizing background signal in autoinductive signal amplification reactions for point-of-need assays". Analytical Methods 7, n.º 17 (2015): 7186–92. http://dx.doi.org/10.1039/c5ay00508f.
Texto completo da fonteTeses / dissertações sobre o assunto "Amplification du signal (chimie)"
Rabin, Charlie. "Nouvelles stratégies d'amplification moléculaire d'un signal basées sur l'activation de dérivés pro-quinoniques : de l'activation d'un catalyseur biomoléculaire au déclenchement d'une réaction auto-catalytique". Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC079/document.
Texto completo da fonteGenerally, diagnosing a given pathology at an early stage of development promotes the patient's prognosis. Such a performance requires the detection of specific markers which are present in complex biological fluids at low concentration level. To detect these extremely low analyte concentrations, the strategy employed in this work is the molecular amplification of the signal. To this end, different approaches are possible (i) amplifying the signal resulting from the target / probe recognition event, (ii and iii) amplifying the signal by regeneration or replication of the target. The strategies conceived during this thesis work mainly focus on the detection of small molecules, such as hydrogen peroxide or fluoride anion, but with the idea of extending them to the indirect detection of biomarkers or proteins of interest. The first part of this thesis focuses on the molecular amplification of a signal by allosteric catalysis using the reconstitution reaction of a given apoenzyme with its cofactor. The second part of this thesis is based on the implementation of catalytic and auto-catalytic amplification systems for the detection of H2O2, thanks to pro-quinonic derivatives bearing boronic acid/ester group. The distinction between catalytic and auto-catalytic systems is based on whether H2O2 is regenerated or amplified during the reaction
Beltrami, Coline. "Développement d'un biocapteur plasmonique pour la détection en faibles concentrations de miARNs dans le cadre du don d'organes". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST196.
Texto completo da fonteMonitoring the physiological conditions of brain-deceased organ donors is crucial to prevent tissue degradation. Tracking this degradation can be done by following the inflammatory response (i.e. cytokine storm) through specific biomarkers like miRNAs. This work proposes using Surface Plasmon Resonance Imaging (SPRI) to quantitatively detect those miRNAs. To achieve detection at concentrations below the usual SPRI limits, this research focuses on developing a more sensitive and specific SPRI biosensor for miRNA detection. Firstly, a new surface functionalization better oriented was developed for the SPRI gold biochip to improve bioreceptor accessibility. LNA-modified probes were then employed to enhance the affinity with the target miRNA. Secondly, a signal amplification strategy was designed using gold nanoparticles (AuNPs) in a sandwich-like assay, and a kinetic model predicting the amplification factor was developed. The AuNPs were synthesized in a one-step process at ambiant temperature and functionalized for miRNA specificity and solubility in saline solution.These combined approaches led to more than two orders of magnitude signal amplification and a detection limit in the picomolar range
Goggins, Sean. "Enzyme-triggered catalytic signal amplification". Thesis, University of Bath, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.681045.
Texto completo da fonteWhite, Stephanie Rushbrook. "In vitro expression as a signal amplification system". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0009/NQ52446.pdf.
Texto completo da fonteNassif, Rachel. "Design and optimization of polymer nanostructures for signal amplification". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22002.
Texto completo da fonteLes analyses de détection biomoléculaire ont des applications qui s'étendent du diagnostic et de la détection de microbes pathogènes, à la conception de soins médicaux spécifiques et au développement de nouveaux médicaments. Une limitation actuelle de cette approche repose sur le fait que les analytes à détecter sont présentes qu'en faibles quantités. Par conséquent, une méthode efficace d'amplification de l'analyte ou du signal de détection est nécessaire. Nous présentons ici une approche d'amplification du signal qui se fonde sur les nanosphères polymères auto-assemblés, contenant dans leur noyau un grand nombre de centres luminescents basé sur des métaux de transition, et, sur leur périphérie, une unité biologique pour la reconnaissance. Tout d'abord, les copolymères à bloc contenant un bloc hydrophobe de bipyridine de ruthénium, un bloc hydrophile de PEG, et un bloc d'identification biologique de biotine, ont été synthétisés. L'auto-assemblage de ces copolymères dans l'eau donne lieu à la formation des nanosphères qui peuvent être attachés à un analyte cible en utilisant l'interaction entre la biotine et la streptavidin. La capacité d'attacher un si grand nombre de centres métalliques à chaque analyte fournit une méthode simple d'amplification du signal par la luminescence.
Lai, Ming-fai, e 黎明輝. "All-optical signal processing based on optical parametric amplification". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508877.
Texto completo da fonteKaastrup, Kaja. "Photopolymerization-based signal amplification : mechanistic characterization and practical implementation". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101507.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (pages 124-135).
Polymerization-based signal amplification is an approach to biosensing that leverages the amplification inherent to radical polymerization to enhance signal associated with molecular recognition. This versatile technique has been implemented with a number of radical polymerization chemistries, including atom-transfer radical polymerization (ATRP), photopolymerization, reversible addition-fragmentation chain transfer polymerization (RAFT), and enzyme-mediated redox polymerization. This thesis focuses on the development of photopolymerization-based signal amplification (PBA) as a platform technology for use at the point-of-care. We sought to build a mechanistic understanding of the system, specifically examining the effects of non-ideal binding reactions and oxygen. One of the greatest barriers to wider implementation of polymerization-based signal amplification is the susceptibility of radical polymerization reactions to oxygen inhibition. Oxygen reacts with initiating and propagating radicals to form peroxy radicals that are unreactive towards propagation, and thus have the effect of terminating the reaction. Chapter 2 describes the development of an air-tolerant monomer solution that allows interfacial photopolymerization reactions to proceed under ambient conditions in as little as 35 seconds where previous implementations of PBA required inert gas purging to remove oxygen and reaction times of 20 minutes or longer. We showed that the inclusion of submicromolar concentrations of eosin, the photoinitiator, in the monomer solution mitigated the effects of oxygen. The ability to perform these reactions under ambient conditions increases their clinical utility by simplifying the procedure and by eliminating purging gases that might be detrimental in some biological applications, specifically those involving cells. Intrigued by eosin's ability to overcome over 1000-fold excess of oxygen, we performed spectroscopic measurements in order to elucidate the mechanisms underlying eosin's resistance towards oxygen inhibition. A dual-monitoring system for measuring eosin consumption and monomer conversion was used to corroborate the hypothesized regeneration of eosin in the presence of oxygen (Chapter 3). This required the development of a method for analyzing absorbance data for polymerizing hydrogels. We further examined the photoactivation kinetics of the eosin/tertiary amine system and the effect of oxygen using absorbance spectroscopy and kinetic modeling (Chapter 4). The spectroscopic investigation revealed that, in addition to the previously postulated reactions in which eosin is regenerated by oxygen, additional reactions between oxygen and eosin in its triplet state and semireduced form occur and must be taken into account. The formation and consumption of the semireduced species informed the construction of a kinetic model, for which the importance of considering the reaction between triplet state eosin and the tertiary amine as two separate steps was clearly demonstrated. Transitioning away from an examination of the amplification chemistry, we next considered the molecular recognition event, exploring the concept of the amplification threshold by investigating the impact of the binding affinity of the molecular recognition event on the limit of detection (Chapter 5). We showed that improvements in binding affinity enhance detection sensitivity. A mass action kinetics based model was used to accurately predict experimental findings and identify the key parameters for predicting the performance of PBA reactions: surface capture probe density, incubation time, concentration and binding affinity of the target molecule. We evaluated the commonly proposed strategy of developing polymeric macrophotoinitiators for improving the sensitivity of photopolymerization-based signal amplification reactions (Chapter 6). Building on earlier work, in which solubility limits were encountered coupling eosin and neutravidin to a poly (acrylic acid-co-acrylamide) backbone, we synthesized a more water-soluble polymeric macrophotoinitiator based on a generation 7 poly (amidoamine) dendrimer scaffold. Although the solubility was improved, a new quenching limitation was identified, demonstrating the complexity of designing polymeric macrophotoinitiators that incorporate eosin as the photoinitiator. In lieu of viable photoinitiator alternatives to eosin, we concluded that future efforts to design polymeric macrophotoinitiators should include features that increase the distance between eosin molecules. We used photopolymerization-based signal amplification to selectively encapsulate a target population of cells in a co-culture (Chapter 7). PBA allows for the selective growth of an immunoprotective hydrogel only at the surfaces of the labeled cells, even in closely contacted cell aggregates. The hydrogel protects the cells against subsequent lysis, allowing for nucleic acid extraction from the unlabeled cells without the need for cell sorting. Finally, we consider the vast, unexplored parameter space for photopolymerization-based signal amplification, surveying alternative photoinitiation chemistries, new approaches to signal interpretation, and future applications.
by Kaja Kaastrup.
Ph. D.
Lai, Ming-fai. "All-optical signal processing based on optical parametric amplification". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508877.
Texto completo da fonteFletcher, A. L. "Cryogenic developments and signal amplification in environmental scanning electron microscopy". Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599080.
Texto completo da fonteOliveira, João Pedro Abreu de. "Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers". Master's thesis, Faculdade de Ciências e Tecnologia, 2010. http://hdl.handle.net/10362/5439.
Texto completo da fonteSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.
Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPACT
Livros sobre o assunto "Amplification du signal (chimie)"
Oliveira, João P., e João Goes. Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1671-5.
Texto completo da fonteOliveira, João P. Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Boston, MA: Springer US, 2012.
Encontre o texto completo da fonte1954-, Sibley David Robert, e Housley Miles D, eds. Regulation of cellular signal transduction pathways by densensitization [i.e. desensitization] and amplification. Chichester: J. Wiley, 1994.
Encontre o texto completo da fontePolya, Gideon Maxwell. Biochemical targets of plant bioactive compounds: A pharmacological reference guide to sites of action and biological effects. London: Taylor & Francis, 2003.
Encontre o texto completo da fonteC, Schultz Jack, Raskin Ilya e Pennsylvania State University. Intercollege Graduate Program in Plant Physiology., eds. Plant signals in interactions with other organisms. Rockville, Md: American Society of Plant Physiologists, 1993.
Encontre o texto completo da fonteGoes, João, e João P. Oliveira. Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer, 2012.
Encontre o texto completo da fonteGoes, João, e João P. Oliveira. Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer, 2014.
Encontre o texto completo da fonteParametric Analog Signal Amplification Applied To Nanoscale Cmos Technologies. Springer, 2012.
Encontre o texto completo da fonteNanomaterials for Water Management: Signal Amplification for Biosensing from Nanostructures. Taylor & Francis Group, 2015.
Encontre o texto completo da fonteMarks, Robert S., e Ibrahim Abdulhalim. Nanomaterials for Water Management: Signal Amplification for Biosensing from Nanostructures. Pan Stanford Publishing, 2015.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Amplification du signal (chimie)"
Schmeckebier, Holger. "Signal Amplification". In Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication, 101–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44275-4_6.
Texto completo da fonteWeik, Martin H. "signal amplification". In Computer Science and Communications Dictionary, 1577. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17336.
Texto completo da fonteLi, Weitao, Fule Li e Zhihua Wang. "Amplification". In Analog Circuits and Signal Processing, 75–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62012-1_4.
Texto completo da fonteSchutzbank, Ted E. "Signal Amplification Technologies". In Advanced Techniques in Diagnostic Microbiology, 327–44. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-3970-7_18.
Texto completo da fonteWeik, Martin H. "optical signal amplification". In Computer Science and Communications Dictionary, 1186. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_13143.
Texto completo da fonteWang, Yun Wayne. "Signal Amplification Methods". In Clinical Virology Manual, 167–72. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555819156.ch14.
Texto completo da fontePhilippe, Bart, e Patrick Reynaert. "Power Amplification". In Analog Circuits and Signal Processing, 69–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11224-9_4.
Texto completo da fonteJu, Huangxian, Xueji Zhang e Joseph Wang. "Signal Amplification for Nanobiosensing". In NanoBiosensing, 39–84. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9622-0_2.
Texto completo da fonteFerreira, Mário F. S. "Optical Pulse Amplification". In Optical Signal Processing in Highly Nonlinear Fibers, 73–90. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429262111-6.
Texto completo da fonteCarr, Ronald I., F. Kwan Wong e Damaso Sadi. "Signal Amplification Systems: Substrate Cascade". In Nonradioactive Labeling and Detection of Biomolecules, 240–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-00144-8_17.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Amplification du signal (chimie)"
Hagag, Mohamed F., Thomas R. Jones, Karim Seddik e Dimitrios Peroulis. "Signal Amplification in Time-Modulated RF Components with Infinite Superluminality". In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), 367. IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632268.
Texto completo da fonteWenZe, Du, Li XueFeng e Hui Rui. "Signal Format Conversion Based on CNT/PI Waveguide Phase Sensitive Amplification". In 2024 6th International Conference on Natural Language Processing (ICNLP), 763–69. IEEE, 2024. http://dx.doi.org/10.1109/icnlp60986.2024.10692574.
Texto completo da fonteSarma, Krishna, e Mohd Mansoor Khan. "E-Band Signal Amplification in "Waterless" Thulium-Doped Fibers: Numerical Analysis". In 2024 IEEE 10th International Conference on Photonics (ICP), 18–19. IEEE, 2024. https://doi.org/10.1109/icp60542.2024.10877029.
Texto completo da fonteJiang, Sikang, Hongyu Chen, Zhipeng Jia, Zhichao Wang e Ruijie Cai. "A review of ADDoS attack mechanisms, amplification vulnerability discovery, and mitigation". In Fifth International Conference on Signal Processing and Computer Science (SPCS 2024), editado por Haiquan Zhao e Lei Chen, 86. SPIE, 2025. https://doi.org/10.1117/12.3054167.
Texto completo da fonteSHIKANO, YUTAKA. "ON SIGNAL AMPLIFICATION FROM WEAK-VALUE AMPLIFICATION". In Summer Workshop on Physics, Mathematics, and All That Quantum Jazz. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814602372_0006.
Texto completo da fonteMunster, Petr, Josef Vojtech, Petr Sysel, Radim Sifta, Vit Novotny, Tomas Horvath, Stanislav Sima e Miloslav Filka. "Φ-OTDR signal amplification". In SPIE Optics + Optoelectronics, editado por Francesco Baldini, Jiri Homola e Robert A. Lieberman. SPIE, 2015. http://dx.doi.org/10.1117/12.2179026.
Texto completo da fonteBel'dyugin, I. M., V. F. Efimkov, I. G. Zubarev e S. I. Mikhailov. "Small signal SBS: amplification". In International Conference on Lasers, Applications, and Technologies '07, editado por Valentin A. Orlovich, Vladislav Panchenko e Ivan A. Scherbakov. SPIE, 2007. http://dx.doi.org/10.1117/12.752884.
Texto completo da fonteAdler, Karl E., Mary C. Tyler, Alvydas Mikulskis, Mike O'Malley, Jeff J. Broadbent, Eva E. Golenko, Andy L. Johnson, Steve Lott, Anis H. Khimani e Mark N. Bobrow. "Signal amplification on microarrays: techniques and advances in tyramide signal amplification (TSA)". In BiOS 2001 The International Symposium on Biomedical Optics, editado por Michael L. Bittner, Yidong Chen, Andreas N. Dorsel e Edward R. Dougherty. SPIE, 2001. http://dx.doi.org/10.1117/12.427977.
Texto completo da fonteShikano, Yutaka. "On signal amplification via weak measurement". In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903102.
Texto completo da fonteShore, K. A. "Small Signal Amplification In Semiconductor Lasers". In Hague International Symposium, editado por M. J. Adams. SPIE, 1987. http://dx.doi.org/10.1117/12.941206.
Texto completo da fonteRelatórios de organizações sobre o assunto "Amplification du signal (chimie)"
Cromwell, R. Signal Processing Studies Program Optical Signal Amplification. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1987. http://dx.doi.org/10.21236/ada188054.
Texto completo da fonteRoehrig, H., e M. Browne. Signal Processing Studies Program Optical Signal Amplification. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1987. http://dx.doi.org/10.21236/ada188055.
Texto completo da fonteMore, T. Directionality and signal amplification in cryogenic dark matter detection. Office of Scientific and Technical Information (OSTI), maio de 1996. http://dx.doi.org/10.2172/387535.
Texto completo da fonteSmith, David A., Alan Willner e Kathryn Li. Optically-Amplified Scalable WDM Networks Using Acousto-Optic Filters for Amplification Gain Equalization and Signal Routing. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1997. http://dx.doi.org/10.21236/ada334120.
Texto completo da fonte