Literatura científica selecionada sobre o tema "Amino acids sensing"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Amino acids sensing".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Amino acids sensing"
Tang, Lei. "Sensing proteinogenic amino acids". Nature Methods 17, n.º 2 (fevereiro de 2020): 126. http://dx.doi.org/10.1038/s41592-020-0741-z.
Texto completo da fontePoulsen, P., B. Wu, R. F. Gaber, Kim Ottow, H. A. Andersen e M. C. Kielland-Brandt. "Amino acid sensing by Ssy1". Biochemical Society Transactions 33, n.º 1 (1 de fevereiro de 2005): 261–64. http://dx.doi.org/10.1042/bst0330261.
Texto completo da fonteRay, L. B. "Sensing amino acids at the lysosome". Science 347, n.º 6218 (8 de janeiro de 2015): 141–43. http://dx.doi.org/10.1126/science.347.6218.141-p.
Texto completo da fonteRay, L. Bryan. "Sensing Amino Acids at the Lysosome". Science Signaling 8, n.º 359 (13 de janeiro de 2015): ec12-ec12. http://dx.doi.org/10.1126/scisignal.aaa6512.
Texto completo da fonteZhou, Yanxiu, Bin Yu e Kalle Levon. "Potentiometric Sensing of Chiral Amino Acids". Chemistry of Materials 15, n.º 14 (julho de 2003): 2774–79. http://dx.doi.org/10.1021/cm030060e.
Texto completo da fonteConigrave, A. D., H. C. Mun e S. C. Brennan. "Physiological significance of L-amino acid sensing by extracellular Ca2+-sensing receptors". Biochemical Society Transactions 35, n.º 5 (25 de outubro de 2007): 1195–98. http://dx.doi.org/10.1042/bst0351195.
Texto completo da fonteLynch, Ciarán C., Zeus A. De los Santos e Christian Wolf. "Chiroptical sensing of unprotected amino acids, hydroxy acids, amino alcohols, amines and carboxylic acids with metal salts". Chemical Communications 55, n.º 44 (2019): 6297–300. http://dx.doi.org/10.1039/c9cc02525a.
Texto completo da fonteLushchak, Oleh. "Amino Acids: Sensing and Implication into Aging". Journal of Vasyl Stefanyk Precarpathian National University 2, n.º 1 (30 de abril de 2015): 51–60. http://dx.doi.org/10.15330/jpnu.2.1.51-60.
Texto completo da fonteYAO, SHANG J., WEIJIAN XU, TERRI-LYNN DAY, JOHN F. PATZER e SIDNEY K. WOLFSON. "Interference of Glucose Sensing by Amino Acids". ASAIO Journal 40, n.º 1 (janeiro de 1994): 33–40. http://dx.doi.org/10.1097/00002480-199401000-00007.
Texto completo da fonteYAO, SHANG J., WEIJIAN XU, TERRI-LYNN DAY, JOHN F. PATZER e SIDNEY K. WOLFSON. "Interference of Glucose Sensing by Amino Acids". Asaio journal 40, SUPPLEMENT 1 (janeiro de 1994): 33???40. http://dx.doi.org/10.1097/00002480-199401001-00007.
Texto completo da fonteTeses / dissertações sobre o assunto "Amino acids sensing"
Nakato, Junya. "Physiological studies on gastrointestinal sensing of peptides and amino acids". Kyoto University, 2018. http://hdl.handle.net/2433/232349.
Texto completo da fonte0048
新制・課程博士
博士(農学)
甲第21148号
農博第2274号
新制||農||1058(附属図書館)
学位論文||H30||N5122(農学部図書室)
京都大学大学院農学研究科食品生物科学専攻
(主査)教授 金本 龍平, 教授 保川 清, 教授 谷 史人
学位規則第4条第1項該当
Chiang, Mengying. "A Study on the Regulation of Amino Acids and Glucose Sensing Pathways in Saccharomyces cerevisiae". ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1713.
Texto completo da fontePrice, Michelle B. "Functional Analysis of Plant Glutamate Receptors". Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51946.
Texto completo da fontePh. D.
Hoe, Nancy Palme. "Analysis of Temperature Sensing in Yersinia pestis: A Dissertation". eScholarship@UMMS, 1994. https://escholarship.umassmed.edu/gsbs_diss/98.
Texto completo da fonteSpringauf, Andreas [Verfasser]. "Electrophysiological characterization of the acid sensing ion channel shark ASIC1b and identification of amino acids controlling the gating of ASIC1 / Andreas Springauf". Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2011. http://d-nb.info/1018222596/34.
Texto completo da fontePushina, Mariia. "Sensing of Anions, Amines, Diols, and Saccharides by Supramolecular Fluorescent Sensors". Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1558539245401457.
Texto completo da fonteCardoch, Sebastian. "Computational study of single protein sensing using nanopores". Thesis, Uppsala universitet, Materialteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423441.
Texto completo da fonteHan, Ling. "Physiology of Escherichia coli in batch and fed-batch cultures with special emphasis on amino acid and glucose metabolism". Doctoral thesis, KTH, Biotechnology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3334.
Texto completo da fonteThe objective of this work is to better understand themetabolism and physiology ofEscherichiacoli(W3110) in defined medium cultures with thelong-term goal of improving cell yield and recombinant proteinproductivity.
The order of amino acid utilization inE. colibatch cultures was investigated in a medium with16 amino acids and glucose. Ser, Pro, Asp, Gly, Thr, Glu andAla were rapidly consumed and depleted at the end of theexponential phase, while His, Arg, Val, Met, Ile, Leu, Phe, Lysand Tyr were consumed slowly during the following linear growthphase. The uptake order correlated to the maximum specificconsumption rate. Of the rapidly consumed amino acids onlyglyine and threonine improved growth when added individually.Serine was the first amino acid to be consumed, but inhibitedglucose uptake initially, which presumably is related to thefunction of PTS. Valine inhibited cell growth could be releasedby isoleucine. The critical medium concentration of valinetoxicity was 1.5 - 3 µmol L-1. Valine uptake was associated with exchange ofisoleucine out of the cells.
Glycine significantly increased the cell yield,Yx/s,and growth rate ofE. coliin batch cultures in a glucose-mineral medium.Maximum effect occurred at pH 6.8, at 6 - 12 mmol L-1glycine, and below 1.15 g dw L-1.13C NMR technique was employed to identify [1-13C], [2-13C]and [1,2-13C]acetate in the cultures supplied with [2-13C]glycine. The NMR data revealed that littledegradation of added glycine occurred, and that serine/glycinebiosynthesis was repressed below 1.15 g dw L-1, implicating that glycine was a source ofglycine, serine, one-carbon units, and threonine. Above 1.15 gdw L-1, 53% of the consumed glycine carbon was excretedas acetate. Degradation of glycine was associated with anincreased uptake rate, cleavage by GCV, and degradation of bothglycine- and glucose-derived serine to pyruvate. This switch inmetabolism appears to be regulated by quorum sensing.
A cell density-dependent metabolic switch occurred also inthe central metabolism. A 2 - 3 fold decrease in mostglycolytic and TCA cycle metabolites, but an increase inacetyl-CoA, occurred after the switch. The acetate productionrate decreased throughout the culture with a temporary increaseat the switch point, but the intracellular acetate poolremained relatively constant.
Two mixtures of amino acids were fed together with glucosein fed-batch cultures ofE. coliW3110 pRIT44T2, expressing the recombinantprotein ZZT2. One mixture contained 20 amino acids and theother 5 so-called 'protein amino acids': Ala, Arg, Met, His andPhe. Although the amino aids increased the cell yield anddecreased the proteolysis rate in both cases, ZZT2 productionwas decreased. A decrease of ZZT2 synthesis rate is consideredto be the reason. Further studies of the 5 amino acidsindicated that a few amino acids disturb metabolism.
Carbon mass balances were calculated in glucose limitedfed-batch cultures ofE. coli. In the end, the carbon recovery was ~90% basedon biomass, CO2and acetate, but ~100% if the all carbon in themedium was included. Outer membrane (OM) constituents,lipopolysaccharide, phospholipids, and carbohydratescontributed to 63% of the extracellular carbon. Little celllysis occurred and the unidentified (~30%) carbon was assumedto constitute complex carbohydrates. A novel cultivationtechnique Temperature-Limited Fed-Batch (TLFB) is developed toprevent OM shedding in high-cell density cultures.
Keywords: Escherichia coli, amino acids, glycine, quorumsensing, metabolic switch, metabolite pools, carbon balance,outer membrane, lipopolysaccharide, batch culture, fed-batchculture
Delescluse, Julie. "MND, un transporteur d’acides aminés, acteur clef de la réponse neuronale aux acides aminés des corps pédonculés, chez l’adulte Drosophila melanogaster". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK029.
Texto completo da fonteEvery living organism lives in an ecosystem, where it needs to detect and integrate multiple environmental factors (temperature, humidity, organic or non-organic chemical compounds...). These signals play an important role in communication between organisms. Each individual must link these external stimuli with its own internal signals (nutritional, metabolic, hormonal, infection...), and adapt its behavior to ensure its survival and reproduction. To achieve this, complex detection mechanisms have been developed, including the chemosensory system, allowing the reception and discrimination of external chemical molecules. Internal organs are sensitive to internal signals to detect deficiencies and control cellular and tissue homeostasis. These processes are made possible by transmembrane proteins that specialize in detection and/or transporting other molecules such as amino acids (AAs), essential for all cell types such as neuronal cells.My research focuses on an amino acid transporter belonging to the SLC7A family called Minidiscs (MND) and we showed that MND is expressed in the adult brain, in neurons and glial cells. This protein appears to be localized at the plasma membrane and the endoplasmic reticulum. MND is expressed in neurons forming a particular brain structure called Mushroom Bodies (MBs) and plays a key role in the response of these neurons to several L-amino acids (L-Asp, L-Arg, L-Glu, L-Lys, L-Ile, L-Leu, and L-Thr). This result demonstrates that SLC7A transporters are involved in controlling neuron activity and suggests that MBs can directly detect L-amino acids via MND. That making this structure a center for detecting the individual's internal nutritional status. The response of these neurons to L-Leucine MND-dependent involves a TOR pathway and not a GDH one. Due to its localization within the CPs, MND may potentially modulate behaviors associated with this structure. However, the presence of MND in all MB neurons is not required for modulation of male territorial aggressive behavior.My results also show that MND is required for the MBs' response to L-Glutamate which is also a neurotransmitter. MND is described as a transporter of uncharged L-amino acids and not L-Glutamate which is a negatively charged AA. Five L-Glutamate receptors are expressed in the MB neurons expressing MND: NMDAR1, NMDAR2, KAIR1D, mGluR, and GluCl��. We demonstrated that MB activation via the NMDAR1 receptor is MND dependent. This glutamatergic signaling pathway does not appear to be involved in the regulation of aggressive behavior. However, MB activity in response to glutamate involving NMDAR1 appears to be modulated by the social environment. Thus, the response of the MBs is increased in isolated males compared to grouped males. This glutamate response via NMDAR1 could depend on the chronic detection of 11-cis-Vaccenyl Acetate (cVA), a male pheromone. This suggesting that social environment impacts the MB activity.Thus, my results show that SLC-type amino acid transporters are involved in the ability of neurons to respond to neurotransmitters, such as glutamate and AAs
Lucchesi, Pamela A. "Plasma Membrane Processes in Smooth Muscle: Characterization of Ca2+ Transport and Muscarinic Cholinergic Receptors: A Thesis". eScholarship@UMMS, 1989. https://escholarship.umassmed.edu/gsbs_diss/135.
Texto completo da fonteLivros sobre o assunto "Amino acids sensing"
Stibor, Ivan. Anion Sensing. Springer, 2014.
Encontre o texto completo da fonteKirchman, David L. Symbioses and microbes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0014.
Texto completo da fonteCapítulos de livros sobre o assunto "Amino acids sensing"
Gutiérrez-Juárez, Roger. "Regulation of Liver Glucose Metabolism by the Metabolic Sensing of Leucine in the Hypothalamus". In Branched Chain Amino Acids in Clinical Nutrition, 75–86. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-1923-9_7.
Texto completo da fontePeriasamy, Selvakannan, Deepa Dumbre, Libitha Babu, Srinivasan Madapusi, Sarvesh Kumar Soni, Hemant Kumar Daima e Suresh Kumar Bhargava. "Amino Acids Functionalized Inorganic Metal Nanoparticles: Synthetic Nanozymes for Target Specific Binding, Sensing and Catalytic Applications". In Environmental Chemistry for a Sustainable World, 1–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68230-9_1.
Texto completo da fonteLi, Peng, e Guoyao Wu. "Characteristics of Nutrition and Metabolism in Dogs and Cats". In Nutrition and Metabolism of Dogs and Cats, 55–98. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54192-6_4.
Texto completo da fonteParker, Francine, Eulashini Chuntharpursat-Bon, Justin E. Molloy e Michelle Peckham. "Using FRET to Determine How Myo10 Responds to Force in Filopodia". In Mechanobiology, 67–77. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45379-3_4.
Texto completo da fonteGietzen, D. W., S. Hao e T. G. Anthony. "Amino Acid-Sensing Mechanisms: Biochemistry and Behavior". In Handbook of Neurochemistry and Molecular Neurobiology, 249–69. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-30374-1_10.
Texto completo da fonteMarmelstein, Alan M., Javier Moreno e Dorothea Fiedler. "Chemical Approaches to Studying Labile Amino Acid Phosphorylation". In Phosphate Labeling and Sensing in Chemical Biology, 179–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60357-5_7.
Texto completo da fonteŞener, Gülsu, e Adil Denizli. "Colorimetric Sensor Array Based on Amino Acid-Modified Gold Nanoparticles for Toxic Metal Ion Detection in Water". In Biomimetic Sensing, 75–80. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9616-2_6.
Texto completo da fonteTorii, K., e T. Tsurugizawa. "Brain Amino Acid Sensing". In The Molecular Nutrition of Amino Acids and Proteins, 331–40. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-802167-5.00024-4.
Texto completo da fonteManoj, Devaraj, Saravanan Rajendran, Manoharan Murphy e Mohana Marimuthu. "Graphene-based Nanocomposites for Amino Acid Sensing". In Graphene-based Nanocomposite Sensors, 369–93. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837671847-00369.
Texto completo da fonteZahid Farooq, Muhammad, e Hafiz Ishfaq Ahmad. "Sensing of Nutrients and the State of Sensors for the mTORC1 Pathway that are Controlled by Amino Acids". In Recent Trends In Livestock Innovative Technologies, 116–25. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815165074123070011.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Amino acids sensing"
Xin, Lianxin, Jie Hou, Aleem Sayles, Jian Zhao, Aristides Marcano, Hui Xia e Jun Ren. "Raman spectral analyses of amino acids in life processes". In Optical Diagnostics and Sensing XIX: Toward Point-of-Care Diagnostics, editado por Gerard L. Coté. SPIE, 2019. http://dx.doi.org/10.1117/12.2509883.
Texto completo da fonteBader, Michael, Dankwart Rauscher, Kurt Geibel e Juergen Angerer. "Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids". In Environmental Sensing '92, editado por Tuan Vo-Dinh e Karl Cammann. SPIE, 1993. http://dx.doi.org/10.1117/12.140257.
Texto completo da fonteHeng Zhang. "Determination of twenty amino acids by ninhydrin reaction with FIA". In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965907.
Texto completo da fonteRosen, David L., e James B. Gillespie. "Atmospheric extinction effect on remote chemical sensing". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tuu8.
Texto completo da fonteSang, Yaxin, Changlu Wang e Li Wang. "Study on amino acids chelating calcium prepared by shellfish processing by-products". In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2011). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965801.
Texto completo da fonteThobakgale, Setumo Lebogang, Satuurnin Ombinda Lemboumba e Patience Mthunzi-Kufa. "Investigation and calibration of non-essential amino acids using a custom built Raman spectroscopy system". In Optical Diagnostics and Sensing XIX: Toward Point-of-Care Diagnostics, editado por Gerard L. Coté. SPIE, 2019. http://dx.doi.org/10.1117/12.2509839.
Texto completo da fonteAcosta-Maeda, Tayro E., Anupam K. Misra, Shiv K. Sharma, M. Nurul Abedin, Lloyd G. Muzangwa e Genesis Berlanga. "Stand-off detection of amino acids and nucleic bases using a compact instrument as a tool for search for life". In Lidar Remote Sensing for Environmental Monitoring XVI, editado por Nobuo Sugimoto e Upendra N. Singh. SPIE, 2018. http://dx.doi.org/10.1117/12.2324827.
Texto completo da fonteNguyen, Tyler, e Mitchio Nemchick, Okumura. "QUANTUM CASCADE LASER-BASED INFRARED PHOTODISSOCIATION ACTION SPECTROSCOPY OF HYDRATED AMINO ACIDS FOR PLANETARY SCIENCE IN SITU SENSING APPLICATIONS". In 2023 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2023. http://dx.doi.org/10.15278/isms.2023.6816.
Texto completo da fonteShukri, Nafeesa S., Zaharah Johari, N. Ezaila Alias, N. Aini Zakaria e M. F. M. Yusoff. "Improved Sensing Properties of Amino Acid on Black Phosphorene: A Computational Study". In 2019 IEEE International Conference on Sensors and Nanotechnology (SENSORS & NANO). IEEE, 2019. http://dx.doi.org/10.1109/sensorsnano44414.2019.8940053.
Texto completo da fonteLiu, Wei, Sixing Xu, Binmeng Hu e Xiaohong Wang. "A novel potential modulated amino acid sensing chip modified by MXene for total internal reflection imaging ellipsometry biosensor". In 2018 IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018. http://dx.doi.org/10.1109/memsys.2018.8346558.
Texto completo da fonteRelatórios de organizações sobre o assunto "Amino acids sensing"
Spalding, Edgar P. Amino acid-sensing ion channels in plants. Office of Scientific and Technical Information (OSTI), agosto de 2014. http://dx.doi.org/10.2172/1149488.
Texto completo da fonteWisniewski, Michael, Samir Droby, John Norelli, Dov Prusky e Vera Hershkovitz. Genetic and transcriptomic analysis of postharvest decay resistance in Malus sieversii and the identification of pathogenicity effectors in Penicillium expansum. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7597928.bard.
Texto completo da fonte