Artigos de revistas sobre o tema "Amides"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Amides".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Soong, Chee-Leong, Jun Ogawa e Sakayu Shimizu. "A Novel Amidase (Half-Amidase) for Half-Amide Hydrolysis Involved in the Bacterial Metabolism of Cyclic Imides". Applied and Environmental Microbiology 66, n.º 5 (1 de maio de 2000): 1947–52. http://dx.doi.org/10.1128/aem.66.5.1947-1952.2000.
Texto completo da fonteBarham, Joshua P., e Jaspreet Kaur. "Site-Selective C(sp3)–H Functionalizations Mediated by Hydrogen Atom Transfer Reactions via α-Amino/α-Amido Radicals". Synthesis 54, n.º 06 (25 de outubro de 2021): 1461–77. http://dx.doi.org/10.1055/a-1677-6619.
Texto completo da fonteZhou, Yongyun, Ruhima Khan, Baomin Fan e Lijin Xu. "Ruthenium-Catalyzed Selective Reduction of Carboxylic Esters and Carboxamides". Synthesis 51, n.º 12 (30 de abril de 2019): 2491–505. http://dx.doi.org/10.1055/s-0037-1611524.
Texto completo da fonteZarecki, Adam P., Jacek L. Kolanowski e Wojciech T. Markiewicz. "Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and Carboxylic Acids". Molecules 25, n.º 8 (11 de abril de 2020): 1761. http://dx.doi.org/10.3390/molecules25081761.
Texto completo da fonteOrsy, György, Sayeh Shahmohammadi e Enikő Forró. "A Sustainable Green Enzymatic Method for Amide Bond Formation". Molecules 28, n.º 15 (28 de julho de 2023): 5706. http://dx.doi.org/10.3390/molecules28155706.
Texto completo da fonteMartinez-Rodríguez, Sergio, Rafael Contreras-Montoya, Jesús M. Torres, Luis Álvarez de Cienfuegos e Jose Antonio Gavira. "A New L-Proline Amide Hydrolase with Potential Application within the Amidase Process". Crystals 12, n.º 1 (23 de dezembro de 2021): 18. http://dx.doi.org/10.3390/cryst12010018.
Texto completo da fonteKhalimon, Andrey, Kristina Gudun e Davit Hayrapetyan. "Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines". Catalysts 9, n.º 6 (28 de maio de 2019): 490. http://dx.doi.org/10.3390/catal9060490.
Texto completo da fonteFournand, David, Frederic Bigey e Alain Arnaud. "Acyl Transfer Activity of an Amidase from Rhodococcussp. Strain R312: Formation of a Wide Range of Hydroxamic Acids". Applied and Environmental Microbiology 64, n.º 8 (1 de agosto de 1998): 2844–52. http://dx.doi.org/10.1128/aem.64.8.2844-2852.1998.
Texto completo da fonteDing, Wen, Shaoyu Mai e Qiuling Song. "Molecular-oxygen-promoted Cu-catalyzed oxidative direct amidation of nonactivated carboxylic acids with azoles". Beilstein Journal of Organic Chemistry 11 (11 de novembro de 2015): 2158–65. http://dx.doi.org/10.3762/bjoc.11.233.
Texto completo da fonteKrieck, Sven, Philipp Schüler, Jan Peschel e Matthias Westerhausen. "Straightforward One-Pot Syntheses of Silylamides of Magnesium and Calcium via an In Situ Grignard Metalation Method". Synthesis 51, n.º 05 (13 de dezembro de 2018): 1115–22. http://dx.doi.org/10.1055/s-0037-1610407.
Texto completo da fonteMeerakrishna, Ramakrishnan Suseela, e Ponnusamy Shanmugam. "Synthesis of blue-red emissive amido-substituted di(het)aryl and tri(het)aryl amine derivatives via chemoselective N-mono and N,N-diarylation of (het) aryl amino amides using benzyne/arynes". New Journal of Chemistry 43, n.º 6 (2019): 2550–58. http://dx.doi.org/10.1039/c8nj05823g.
Texto completo da fonteSelvakumar, Kumaravel, Kesamreddy Rangareddy e John F. Harrod. "The titanocene-catalyzed reduction of acetamides to tertiary amines by PhMeSiH2". Canadian Journal of Chemistry 82, n.º 8 (1 de agosto de 2004): 1244–48. http://dx.doi.org/10.1139/v04-063.
Texto completo da fonteYao, Lei, Ming-Yi Wang, Xin-Ke Wang, Yi-Jun Liu, Hang-Fei Chen, Jun Zheng, Wei Nie et al. "Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions". Atmospheric Chemistry and Physics 16, n.º 22 (23 de novembro de 2016): 14527–43. http://dx.doi.org/10.5194/acp-16-14527-2016.
Texto completo da fonteKhaldoun, Khadidja, Abdelmounaim Safer, Salima Saidi-Besbes, Bertrand Carboni, Rémy Le Guével e François Carreaux. "An Efficient Solvent-Free Microwave-Assisted Synthesis of Cinnamamides by Amidation Reaction Using Phenylboronic Acid/Lewis Base Co-catalytic System". Synthesis 51, n.º 20 (29 de julho de 2019): 3891–900. http://dx.doi.org/10.1055/s-0039-1690132.
Texto completo da fonteTrott, Sandra, Sibylle Bürger, Carsten Calaminus e Andreas Stolz. "Cloning and Heterologous Expression of an Enantioselective Amidase from Rhodococcus erythropolis Strain MP50". Applied and Environmental Microbiology 68, n.º 7 (julho de 2002): 3279–86. http://dx.doi.org/10.1128/aem.68.7.3279-3286.2002.
Texto completo da fonteŠilhánková, Alexandra, Karel Šindelář, Karel Dobrovský, Ivan Krejčí, Jarmila Hodková e Zdeněk Polívka. "Synthesis of New L-Proline Amides with Anticonvulsive Effect". Collection of Czechoslovak Chemical Communications 61, n.º 7 (1996): 1085–92. http://dx.doi.org/10.1135/cccc19961085.
Texto completo da fonteHaake, Paul, e Donald A. Tyssee. "Estimation of Charge Density on Nitrogen in Amides by Measurement of One-Bond Carbon-Hydrogen Nuclear Coupling Constants in N-CH3 Group". Zeitschrift für Naturforschung A 48, n.º 1-2 (1 de fevereiro de 1993): 58–62. http://dx.doi.org/10.1515/zna-1993-1-216.
Texto completo da fonteQu, Jing, Shishan Yu, Wenzhao Tang, Yunbao Liu, Yue Liu e Jing Liu. "Progress on Cassaine-Type Diterpenoid Ester Amines and Amides (Erythrophleum Alkaloids)". Natural Product Communications 1, n.º 10 (outubro de 2006): 1934578X0600101. http://dx.doi.org/10.1177/1934578x0600101005.
Texto completo da fonteZahardis, J., S. Geddes e G. A. Petrucci. "The ozonolysis of primary aliphatic amines in single and multicomponent fine particles". Atmospheric Chemistry and Physics Discussions 7, n.º 5 (15 de outubro de 2007): 14603–38. http://dx.doi.org/10.5194/acpd-7-14603-2007.
Texto completo da fonteZahardis, J., S. Geddes e G. A. Petrucci. "The ozonolysis of primary aliphatic amines in fine particles". Atmospheric Chemistry and Physics 8, n.º 5 (29 de fevereiro de 2008): 1181–94. http://dx.doi.org/10.5194/acp-8-1181-2008.
Texto completo da fonteWaseem Abbasi, Sana, Naveed Zafar Ali, Martin Etter, Muhammad Shabbir, Zareen Akhter, Stacey J. Smith, Hammad Ismail e Bushra Mirza. "Synthesis, Characterization and Biological Studies of Ether–Based Ferrocenyl Amides and their Organic Analogues". Crystals 10, n.º 6 (4 de junho de 2020): 480. http://dx.doi.org/10.3390/cryst10060480.
Texto completo da fonteSonke, Theo, Sandra Ernste, Renate F. Tandler, Bernard Kaptein, Wilco P. H. Peeters, Friso B. J. van Assema, Marcel G. Wubbolts e Hans E. Schoemaker. "l-Selective Amidase with Extremely Broad Substrate Specificity from Ochrobactrum anthropi NCIMB 40321". Applied and Environmental Microbiology 71, n.º 12 (dezembro de 2005): 7961–73. http://dx.doi.org/10.1128/aem.71.12.7961-7973.2005.
Texto completo da fonteDunn, P., E. A. Parkes e J. B. Polya. "Amides IX: Acylation of amides and amines". Recueil des Travaux Chimiques des Pays-Bas 71, n.º 7 (2 de setembro de 2010): 676–83. http://dx.doi.org/10.1002/recl.19520710708.
Texto completo da fonteXu, Qing, Huamei Xie, Er-Lei Zhang, Xiantao Ma, Jianhui Chen, Xiao-Chun Yu e Huan Li. "Selective catalytic Hofmann N-alkylation of poor nucleophilic amines and amides with catalytic amounts of alkyl halides". Green Chemistry 18, n.º 14 (2016): 3940–44. http://dx.doi.org/10.1039/c6gc00938g.
Texto completo da fonteNorth, Michael. "Amines and amides". Journal of the Chemical Society, Perkin Transactions 1, n.º 16 (1999): 2209–29. http://dx.doi.org/10.1039/a903369f.
Texto completo da fonteNorth, Michael. "Amines and amides". Contemporary Organic Synthesis 1, n.º 6 (1994): 475. http://dx.doi.org/10.1039/co9940100475.
Texto completo da fonteNorth, Michael. "Amines and amides". Contemporary Organic Synthesis 2, n.º 4 (1995): 269. http://dx.doi.org/10.1039/co9950200269.
Texto completo da fonteNorth, Michael. "Amines and amides". Contemporary Organic Synthesis 3, n.º 4 (1996): 323. http://dx.doi.org/10.1039/co9960300323.
Texto completo da fonteNorth, Michael. "Amines and amides". Contemporary Organic Synthesis 4, n.º 4 (1997): 326. http://dx.doi.org/10.1039/co9970400326.
Texto completo da fonteNorth, Michael. "Amines and amides". Journal of the Chemical Society, Perkin Transactions 1, n.º 17 (1998): 2959–72. http://dx.doi.org/10.1039/a802125b.
Texto completo da fonteKumagai, Naoya, e Masakatsu Shibasaki. "7-Azaindoline Auxiliary: A Versatile Attachment Facilitating Enantioselective C–C Bond-Forming Catalysis". Synthesis 51, n.º 01 (30 de novembro de 2018): 185–93. http://dx.doi.org/10.1055/s-0037-1610412.
Texto completo da fonteCheng, Hua, Cheng Chen, Rui Zhang, Jun-Chao Zhang, Wei-Yi Zhang, Yu-Qing He e Yu-Cheng Gu. "A Practical Approach for the Transamidation of N,N-Dimethyl Amides with Primary Amines Promoted by Sodium tert-Butoxide under Solvent-Free Conditions". Synthesis 52, n.º 21 (8 de setembro de 2020): 3286–94. http://dx.doi.org/10.1055/s-0040-1705892.
Texto completo da fonteOcampo Gutiérrez de Velasco, Diego, Aoze Su, Luhan Zhai, Satowa Kinoshita, Yuko Otani e Tomohiko Ohwada. "Unexpected Resistance to Base-Catalyzed Hydrolysis of Nitrogen Pyramidal Amides Based on the 7-Azabicyclic[2.2.1]heptane Scaffold". Molecules 23, n.º 9 (15 de setembro de 2018): 2363. http://dx.doi.org/10.3390/molecules23092363.
Texto completo da fonteYang, Guo-Ping, Ke Li, Wei Liu, Kai Zeng e Yu-Feng Liu. "Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides". Organic & Biomolecular Chemistry 18, n.º 35 (2020): 6958–64. http://dx.doi.org/10.1039/d0ob01601b.
Texto completo da fonteBittner, Nataly, Andy Boon, Evert H. Delbanco, Christof Walter e Angela Mally. "Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract". Archives of Toxicology 96, n.º 5 (5 de março de 2022): 1423–35. http://dx.doi.org/10.1007/s00204-022-03254-w.
Texto completo da fonteBox, Vernon G. S. "Biocidal Amidic Natural Products". Natural Product Communications 3, n.º 11 (novembro de 2008): 1934578X0800301. http://dx.doi.org/10.1177/1934578x0800301111.
Texto completo da fonteXia, Ji-Bao, Yan-Lin Li e Zheng-Yang Gu. "Transition-Metal-Catalyzed Intermolecular C–H Carbonylation toward Amides". Synlett 32, n.º 01 (17 de agosto de 2020): 07–13. http://dx.doi.org/10.1055/s-0040-1706416.
Texto completo da fonteLaclef, Sylvain, Maria Kolympadi Marković e Dean Marković. "Amide Synthesis by Transamidation of Primary Carboxamides". Synthesis 52, n.º 21 (4 de junho de 2020): 3231–42. http://dx.doi.org/10.1055/s-0040-1707133.
Texto completo da fonteDas, Hari S., Shyamal Das, Kartick Dey, Bhagat Singh, Rahul K. Haridasan, Arpan Das, Jasimuddin Ahmed e Swadhin K. Mandal. "Primary amides to amines or nitriles: a dual role by a single catalyst". Chemical Communications 55, n.º 79 (2019): 11868–71. http://dx.doi.org/10.1039/c9cc05856g.
Texto completo da fonteBlondiaux, Enguerrand, e Thibault Cantat. "Efficient metal-free hydrosilylation of tertiary, secondary and primary amides to amines". Chem. Commun. 50, n.º 66 (2014): 9349–52. http://dx.doi.org/10.1039/c4cc02894e.
Texto completo da fonteHao, Hong-Yan, Shao-Jie Lou, Shuang Wang, Kun Zhou, Qiu-Zi Wu, Yang-Jie Mao, Zhen-Yuan Xu e Dan-Qian Xu. "Pd-catalysed β-selective C(sp3)–H arylation of simple amides". Chemical Communications 57, n.º 65 (2021): 8055–58. http://dx.doi.org/10.1039/d1cc02261j.
Texto completo da fonteBhalla, Tek Chand, e Harish Kumar. "Nocardia globerula NHB-2: a versatile nitrile-degrading organism". Canadian Journal of Microbiology 51, n.º 8 (1 de agosto de 2005): 705–8. http://dx.doi.org/10.1139/w05-046.
Texto completo da fonteRadenović, Čedomir, Danica Bajuk-Bogdanović, Milica Radosavljević, Nenad Delić, Aleksandar Popović, Mile Sečanski e Miloš Crevar. "Assaying of structural parts of hybrid ZP677 grain by IC method disordered Total reflection". Selekcija i semenarstvo 28, n.º 1 (2022): 9–22. http://dx.doi.org/10.5937/selsem2201009r.
Texto completo da fonteWeaver-Guevara, Holly M., Ryan W. Fitzgerald e Arthur Greenberg. "Rotational barriers in five related amides". Canadian Journal of Chemistry 95, n.º 3 (março de 2017): 271–77. http://dx.doi.org/10.1139/cjc-2016-0344.
Texto completo da fonteGarg, Jai Anand, Subrata Chakraborty, Yehoshoa Ben-David e David Milstein. "Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols". Chemical Communications 52, n.º 30 (2016): 5285–88. http://dx.doi.org/10.1039/c6cc01505k.
Texto completo da fonteBock, Hans, e Erik Heigel. "Wechselwirkungen in Molekülkristallen, 162 [1, 2]. Di(arylsulfonyl)amine – geeignete Liganden für lipophil umhüllte Polyionen-Aggregate mit Cs⊕ -Schichten variabler Dicke / Interaction in Molecular Crystals, 162 [1, 2]. Di(arylsulfonyl)amines – Ligands for Lipophilically Wrapped Polyion Aggregates with Cs⊕ -Layers of Variable Thickness". Zeitschrift für Naturforschung B 55, n.º 11 (1 de novembro de 2000): 1053–66. http://dx.doi.org/10.1515/znb-2000-1111.
Texto completo da fonteSaha, Sayantani, e Moris S. Eisen. "Mild catalytic deoxygenation of amides promoted by thorium metallocene". Dalton Transactions 49, n.º 36 (2020): 12835–41. http://dx.doi.org/10.1039/d0dt02770g.
Texto completo da fonteGlover, Stephen A., Arvi Rauk, Jeanne M. Buccigross, John J. Campbell, Gerard P. Hammond, Guoning Mo, Luke E. Andrews e Ashley-Mae E. Gillson. "The HERON reaction Origin, theoretical background, and prevalence". Canadian Journal of Chemistry 83, n.º 9 (1 de setembro de 2005): 1492–509. http://dx.doi.org/10.1139/v05-150.
Texto completo da fonteSchuhmacher, Anne, Tomoya Shiro, Sarah J. Ryan e Jeffrey W. Bode. "Synthesis of secondary and tertiary amides without coupling agents from amines and potassium acyltrifluoroborates (KATs)". Chemical Science 11, n.º 29 (2020): 7609–14. http://dx.doi.org/10.1039/d0sc01330g.
Texto completo da fonteYanev, Pavel, e Plamen Angelov. "Synthesis of functionalised β-keto amides by aminoacylation/domino fragmentation of β-enamino amides". Beilstein Journal of Organic Chemistry 14 (10 de outubro de 2018): 2602–6. http://dx.doi.org/10.3762/bjoc.14.238.
Texto completo da fonte