Literatura científica selecionada sobre o tema "All-solid batteries"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "All-solid batteries".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "All-solid batteries"
HAYASHI, Akitoshi, e Atsushi SAKUDA. "Development of All-solid-state Batteries". Journal of The Institute of Electrical Engineers of Japan 141, n.º 9 (1 de setembro de 2021): 579–82. http://dx.doi.org/10.1541/ieejjournal.141.579.
Texto completo da fonteNotten, Peter H. L. "3D-integrated all-solid-state batteries". Europhysics News 42, n.º 3 (maio de 2011): 24–29. http://dx.doi.org/10.1051/epn/2011303.
Texto completo da fonteBhardwaj, Ravindra Kumar, e David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries". Batteries 9, n.º 2 (3 de fevereiro de 2023): 110. http://dx.doi.org/10.3390/batteries9020110.
Texto completo da fonteAmaresh, S., K. Karthikeyan, K. J. Kim, Y. G. Lee e Y. S. Lee. "Aluminum based sulfide solid lithium ionic conductors for all solid state batteries". Nanoscale 6, n.º 12 (2014): 6661–67. http://dx.doi.org/10.1039/c4nr00804a.
Texto completo da fonteHAYASHI, Akitoshi, Atsushi SAKUDA e Masahiro TATSUMISAGO. "Development of Solid Electrolytes for All-Solid-State Batteries". NIPPON GOMU KYOKAISHI 92, n.º 11 (2019): 430–34. http://dx.doi.org/10.2324/gomu.92.430.
Texto completo da fonteDirican, Mahmut, Chaoyi Yan, Pei Zhu e Xiangwu Zhang. "Composite solid electrolytes for all-solid-state lithium batteries". Materials Science and Engineering: R: Reports 136 (abril de 2019): 27–46. http://dx.doi.org/10.1016/j.mser.2018.10.004.
Texto completo da fonteSmdani, Gulam, Md Wahidul Hasan, Amir Abdul Razzaq e Weibing Xing. "A Novel Solid State Polymer Electrolyte for All Solid State Lithium Batteries". ECS Meeting Abstracts MA2024-01, n.º 1 (9 de agosto de 2024): 113. http://dx.doi.org/10.1149/ma2024-011113mtgabs.
Texto completo da fonteHatzell, Kelsey. "Chemo-Mechanics in All Solid State Composite Cathodes". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de outubro de 2022): 469. http://dx.doi.org/10.1149/ma2022-024469mtgabs.
Texto completo da fonteChen, Zonghai. "(Invited) Formation of Solid/Solid Interface for All Solid State Batteries". ECS Meeting Abstracts MA2020-01, n.º 2 (1 de maio de 2020): 290. http://dx.doi.org/10.1149/ma2020-012290mtgabs.
Texto completo da fonteSun, Zhouting, Mingyi Liu, Yong Zhu, Ruochen Xu, Zhiqiang Chen, Peng Zhang, Zeyu Lu, Pengcheng Wang e Chengrui Wang. "Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries". Sustainability 14, n.º 15 (25 de julho de 2022): 9090. http://dx.doi.org/10.3390/su14159090.
Texto completo da fonteTeses / dissertações sobre o assunto "All-solid batteries"
Johnson, D. R. "The microstructure of all-solid-state batteries". Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.
Texto completo da fonteGeiß, Matthias [Verfasser]. "Sacrificial interlayers for all-solid-state batteries / Matthias Geiß". Gießen : Universitätsbibliothek, 2021. http://d-nb.info/1230476318/34.
Texto completo da fonteQuemin, Elisa. "Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.
Texto completo da fonteWhile Lithium-ion batteries dominate portable devices, growing safety and energy density demands in electric vehicle batteries have led to the exploration of "beyond Li-ion" technology. All-Solid-State Batteries (ASSBs) have emerged as a promising alternative to Li-ion batteries. Thus, this doctoral research focuses on overcoming challenges hindering the practical implementation of ASSBs, with a specific emphasis on cathode composites. The investigation revolves around a common composite comprising Li6PS5Cl solid electrolyte (SE) and NMC active material (AM). The research unveils the degradation mechanisms within ASSBs, governed by SE/Carbon additive and SE/AM interfaces. It is observed that capacity deterioration, occurring below 3.6 V vs. Li-In/In, is primarily attributed to SE/Carbon interfaces. Conversely, elevating the voltage to 3.9 V shifts the primary degradation source to SE/AM interfaces. Then, the adverse effects of carbon additives on the ionic conduction of composites are demonstrated, particularly when exceeding 2 wt. % VGCF. Moreover, the study delves into the electronic conductivity of carbon-free composites using innovative in situ monitoring. This reveals Li-induced alterations hindering electronic conductivity, especially at high charge levels, notably in high Ni-content NMC. Furthermore, the influence of particle size and morphology on electronic percolation is extensively examined, advocating for minimal VGCF to enhance kinetics and stability. Strategies for effectively incorporating carbon additives while mitigating long-term capacity loss are explored, encompassing assembly pressure, loading, formation cycles, temperature, and carbonate coating. By mixing these optimal conditions, an enhanced cathode composite is introduced, holding promising potential for the progression of All-Solid-State Battery technology
Yada, Chihiro. "Studies on electrode/solid electrolyte interface of all-solid-state rechargeable lithium batteries". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144024.
Texto completo da fonte0048
新制・課程博士
博士(工学)
甲第12338号
工博第2667号
新制||工||1377(附属図書館)
24174
UT51-2006-J330
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 江口 浩一, 教授 田中 功
学位規則第4条第1項該当
Sun, Bing. "Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries". Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-248084.
Texto completo da fonteShao, Yunfan. "Highly electrochemical stable quaternary solid polymer electrolyte for all-solid-state lithium metal batteries". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522332577785545.
Texto completo da fonteKoç, Tuncay. "In search of the best solid electrolyte-layered oxide pair in all-solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS535.
Texto completo da fonteAll-solid-state batteries (ASSBs) that rely on the use of solid electrolytes (SEs) with high ionic conductivity are the holy grail for future battery technology, since it could theoretically enable achieving nearly 70 and 40 % increase in volumetric (Wh/l) and gravimetric (Wh/kg) energy densities, respectively, as well as enhanced safety compared to lithium-ion battery technology. To this end, the last decade has witnessed the development of ASSBs mainly through sulfide-based SEs pertaining to their favorable intrinsic properties. However, such advancements were not straightforward to unlock high-performing practical ASSBs because of complex interfacial decomposition reactions taking place at both negative and positive electrodes, leading to a worsening cycling life. Focusing on the positive electrode, this calls for a better understanding of electrochemical/chemical compatibility of SEs that is sorely needed for real-world applications.This work aims to provide answers regarding the best SE-layered oxide pair in composite cathode for ASSBs. By conducting a systematic study on the effect of nature of SEs in battery performances, we show that Li6PS5Cl performances rival that of Li3InCl6, both outperforming β-Li3PS4 and this, independently of the synthesis route. This is preserved when assembling solid-state cells since Li6PS5Cl pairing with layered oxide cathode shows the best retention upon cycling. This study also unravels that halides react with sulfides in hetero-structured cell design, hence resulting in a rapid capacity decay upon cycling stemming from interfacial decomposition reactions. To eliminate such interfacial degradation process, we suggest a surface engineering strategy that helps to alleviate the surface deterioration, unlocking highly performing ASSBs. Eventually, combined electrochemical, structural and spectroscopic analysis demonstrate that Li3InCl6 cannot withstand at higher oxidation potentials, resulting in decomposition products in contrast to what the theoretical calculations predicted
Su, Zhongyi. "Performance enhancement of all-solid-state batteries by optimizing the electrolyte through advanced microscopy and tomography techniques". Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22112.
Texto completo da fonteNaboulsi, Agathe. "Composite organic-inorganic membrane as new electrolyte in all solid-state battery". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS451.
Texto completo da fonteThe development of all-solid-state batteries is essential if we are to make a success of the ecological transition and the deployment of all-electric vehicles. One way of developing this sector is to produce an all-solid electrolyte (SE). Poly(ethylene glycol)-based polymer SEs have the advantage of being adaptable to current Li-ion battery manufacturing processes. Unfortunately, their conductivity remains limited (10-6 - 10-9 S.cm-1) at ambient temperature. Interestingly, inorganic SEs, such as Li7La3Zr2O12, are good ionic conductors (10-3 S.cm-1), but they require costly and energy-intensive shaping processes. This thesis aimed to develop composite SEs that combine the advantages of these two materials. The work focused on the design of a high-performance composite SE and the study of transport mechanisms at the interface of these two materials. An in-depth study of a polymer SE was carried out in order to optimize its synthesis from liquid and commercial monomers. Taking advantage of this synthesis design, various composite SE shaping processes (low-temperature sintering, electro-assisted extrusion, evaporation casting) were explored in order to control the mixing of the two materials and their interface. Electrochemical impedance spectroscopy has been widely used to understand transport phenomena in composite SEs
Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.
Texto completo da fonteGrowing needs for energy storage applications require continuous improvement of the lithium ion batteries (LIB). The anionic redox chemistry has emerged recently as a new paradigm to design high-energy positive electrodes of LIBs, however with some issues (i.e., voltage hysteresis and fading, sluggish kinetics, etc.) that remained to be solved. In addition, the safety of the LIBs can be improved by designing all-solid-state batteries (ASSB). In this thesis, we first focused on the development of new oxide-based solid electrolytes (SE) for applications in ASSBs. We explored the influence of disorder on the ionic conductivity of SEs and demonstrated how to increase the conductivity by stabilizing disordered high-temperature phases. Furthermore, we designed Li-rich layered sulfide electrodes that undergo anionic sulfur redox, with excellent reversibility. Thus, the newly designed electrode materials show a possible direction to mitigate the issues related to anionic redox. Lastly, we used the Li-rich sulfides as positive electrode in ASSB with sulfide-based SEs that demonstrate excellent cyclability, thereby highlighting the importance of interfacial compatibility in ASSBs
Livros sobre o assunto "All-solid batteries"
Kulova, Tatiana. All-Solid-state Thin-film Lithium-ion Batteries. Taylor & Francis Group, 2021.
Encontre o texto completo da fonteKotobuki, Masashi. Ceramic Electrolytes for All-Solid-State Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.
Encontre o texto completo da fonteAL. Ceramic Electrolytes All-Solid-state L: Ceramic Electrolytes for All-Solid-state Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.
Encontre o texto completo da fonteAll Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Encontre o texto completo da fonteSkundin, Alexander, Tatiana Kulova, Alexander Rudy e Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Encontre o texto completo da fonteSkundin, Alexander, Tatiana Kulova, Alexander Rudy e Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Encontre o texto completo da fonteSkundin, Alexander, Tatiana Kulova, Alexander Rudy e Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.
Encontre o texto completo da fonteKulova, Tatiana. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. CRC Press LLC, 2021.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "All-solid batteries"
Tofield, Bruce C. "Future Prospects for All-Solid-State Batteries". In Solid State Batteries, 423–41. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_29.
Texto completo da fonteIlango, P. Robert, Jeevan Kumar Reddy Modigunta, Abhilash Karuthedath Parameswaran, Zdenek Sofer, G. Murali e Insik In. "Novel Design Aspects of All-Solid-State Batteries". In Solid State Batteries, 157–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_6.
Texto completo da fonteAjith, K., P. Christopher Selvin, K. P. Abhilash, Nithyadharseni Palaniyandy, P. Adlin Helen e G. Somasundharam. "Recycling of All-Solid-State Lithium-Ion Batteries". In Solid State Batteries, 245–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_9.
Texto completo da fonteRatsoma, M. S., K. Makgopa, K. D. Modibane e K. Raju. "Prospective Cathode Materials for All-Solid-State Batteries". In Solid State Batteries, 83–125. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_4.
Texto completo da fontePriyanka, P., B. Nalini e P. Nithyadharseni. "Basic Aspects of Design and Operation of All-Solid-State Batteries". In Solid State Batteries, 1–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_1.
Texto completo da fonteAbhilash, K. P., P. Nithyadharseni, P. Sivaraj, D. Lakshmi, Seema Agarwal, Bhekie B. Mamba e Zdenek Sofer. "Future Challenges to Address the Market Demands of All-Solid-State Batteries". In Solid State Batteries, 275–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_10.
Texto completo da fonteNakamura, Hideya, e Satoru Watano. "Dry Coating of Electrode Particle with Solid Electrolyte for Composite Electrode of All-Solid-State Battery". In Next Generation Batteries, 93–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_9.
Texto completo da fonteAsakura, Ryo, Arndt Remhof e Corsin Battaglia. "Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries". In ACS Symposium Series, 353–93. Washington, DC: American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1413.ch014.
Texto completo da fonteAbhilash, K. P., P. Sivaraj, Bhupendar Pal, P. Nithyadharseni, B. Nalini, Sudheer Kumar Yadav, Robert Illango e Zdenek Sofer. "Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries". In Solid State Batteries, 219–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_8.
Texto completo da fonteOkumura, Toyoki. "Powder-Process-Based Fabrication of Oxide-Based Bulk-Type All-Solid-State Batteries". In Next Generation Batteries, 221–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_20.
Texto completo da fonteTrabalhos de conferências sobre o assunto "All-solid batteries"
Ferreira, Patryck, e Shu-Xia Tang. "Quintuple Thermal Model for All-Solid-State Batteries and Temperature Estimation through a Cascaded Thermal-Electrochemical Model". In 2024 IEEE Conference on Control Technology and Applications (CCTA), 716–21. IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666604.
Texto completo da fonteMaohua, Chen, Rayavarapu Prasada Rao e Stefan Adams. "All-Solid-State Lithium Batteries Using Li6PS5Br Solid Electrolyte". In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_154.
Texto completo da fonteBeutl, Alexander, Ningxin Zhang, Marcus Jahn e Maria Nestoridi. "All-solid state batteries for space exploration". In 2019 European Space Power Conference (ESPC). IEEE, 2019. http://dx.doi.org/10.1109/espc.2019.8931978.
Texto completo da fonteTHANGADURAI, V., J. SCHWENZEI e W. WEPPNER. "DEVELOPMENT OF ALL-SOLID-STATE LITHIUM BATTERIES". In Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0084.
Texto completo da fonteFinsterbusch, Martin. "Oxide-Electrolyte Based All-Solid-State Batteries". In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.088.
Texto completo da fonteSong, Taeseup, Jehyun Lee, Jiwoon Kim, Minsung Kim, Myungju Woo, Seungwoo Lee, Jaeik Kim et al. "Electrode Structure Engineering for All Solid State Batteries". In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.216.
Texto completo da fonteSousa, R., J. F. Ribeiro, J. A. Sousa, L. M. Goncalves e J. H. Correia. "All-solid-state batteries: An overview for bio applications". In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518400.
Texto completo da fonteHu, Zhixiong, Huangqing Ye, Jiahui Chen, Xian-Zhu Fu, Rong Sun e Ching-Ping Wong. "Li0.43La0.56Ti0.95Ge0.05O3/PEO composite solid electrolytes for flexible all-solid-state lithium batteries". In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480741.
Texto completo da fonteLiu, Hongru, e Ceng Li. "Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries". In 2022 3rd International Conference on Clean and Green Energy Engineering (CGEE). IEEE, 2022. http://dx.doi.org/10.1109/cgee55282.2022.9976528.
Texto completo da fonteLiu, Wei, Ryan Milcarek, Kang Wang e Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries". In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Texto completo da fonteRelatórios de organizações sobre o assunto "All-solid batteries"
Zhang, Pu. All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Office of Scientific and Technical Information (OSTI), dezembro de 2022. http://dx.doi.org/10.2172/1906484.
Texto completo da fonteYe, Jianchao. Printing of All Solid-State Lithium Batteries (BMR FY20Q1 Task 4). Office of Scientific and Technical Information (OSTI), janeiro de 2020. http://dx.doi.org/10.2172/1631527.
Texto completo da fonteDoeff, Marca. Flexible All Solid State Lithium Batteries Made by Roll-to-Roll Freeze-Casting. Office of Scientific and Technical Information (OSTI), julho de 2019. http://dx.doi.org/10.2172/1569485.
Texto completo da fonteYe, J. FY24Q1 VTO Quarter Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), fevereiro de 2024. http://dx.doi.org/10.2172/2429648.
Texto completo da fonteYe, J., e M. Wood. VTO FY23Q4 Quarterly Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), novembro de 2023. http://dx.doi.org/10.2172/2429659.
Texto completo da fonteYe, J., A. Orhan e E. Ramos. VTO FY23Q3 Quarterly Report on 3D Printing of All-Solid-State Lithium batteries. Office of Scientific and Technical Information (OSTI), novembro de 2023. http://dx.doi.org/10.2172/2429657.
Texto completo da fonteYersak, Thomas. Hot Pressing of Reinforced Li-NMC All-Solid State Batteries with Sulfide Glass Electrolyte. Office of Scientific and Technical Information (OSTI), setembro de 2023. http://dx.doi.org/10.2172/2246589.
Texto completo da fonteYe, J., A. Orhan, M. Wood e E. Ramos. VTO FY23 Annual Progress Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), novembro de 2023. http://dx.doi.org/10.2172/2429655.
Texto completo da fonteNarayanan, Badri, Hui Wang, Gamini Sumanasekera e Jacek Jasinski. Predictive Engineering of Interfaces and Cathodes for High-Performance All Solid-State Lithium-Sulfur Batteries. Office of Scientific and Technical Information (OSTI), maio de 2023. http://dx.doi.org/10.2172/1971763.
Texto completo da fonteDoeff, Marca. Composite Cathode Architectures Made By Freeze-Casting for All Solid State Lithium Batteries: CRADA Final Report. Office of Scientific and Technical Information (OSTI), fevereiro de 2023. http://dx.doi.org/10.2172/1923547.
Texto completo da fonte