Siga este link para ver outros tipos de publicações sobre o tema: Alkyl-Alkyl couplings.

Artigos de revistas sobre o tema "Alkyl-Alkyl couplings"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Alkyl-Alkyl couplings".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Li, Yangyang, Yuqiang Li, Long Peng, Dong Wu, Lei Zhu e Guoyin Yin. "Nickel-catalyzed migratory alkyl–alkyl cross-coupling reaction". Chemical Science 11, n.º 38 (2020): 10461–64. http://dx.doi.org/10.1039/d0sc03217d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Saito, Bunnai, e Gregory C. Fu. "Alkyl−Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Halides at Room Temperature". Journal of the American Chemical Society 129, n.º 31 (agosto de 2007): 9602–3. http://dx.doi.org/10.1021/ja074008l.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Qin, Tian, Min Zhou e Jet Tsien. "Unsymmetrical Heterocycle Cross-Couplings Enabled by Sulfur(IV) Reagents". Synlett 31, n.º 20 (14 de agosto de 2020): 1962–66. http://dx.doi.org/10.1055/s-0040-1706412.

Texto completo da fonte
Resumo:
Whereas metal-mediated cross-couplings find broad applications in syntheses of medicines, agrochemicals, and natural products, these powerful transformations have limited utility for Lewis basic substrates (e.g., heteroarenes), wherein basic functionalities coordinate to the metal center, hindering product formation. In this context, we have developed a transition-metal-free cross-coupling reaction mediated by sulfur(IV). This method leverages the ability of simple alkyl sulfinyl(IV) chlorides to form bipyramidal sulfurane complexes to drive a pseudo ‘reductive elimination’ process from the hypervalent sulfur atom, thereby readily providing unsymmetrical biheteroarenes.1 Introduction2 Historical Sulfurane(IV)-Mediated Couplings3 Unsymmetrical Heterocycle Cross-Couplings4 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Saito, Bunnai, e Gregory C. Fu. "Enantioselective Alkyl−Alkyl Suzuki Cross-Couplings of Unactivated Homobenzylic Halides". Journal of the American Chemical Society 130, n.º 21 (maio de 2008): 6694–95. http://dx.doi.org/10.1021/ja8013677.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kunze, Udo, e Rolf Tittmann. "Phosphinsubstituierte Chelatliganden, XXIII [1] Darstellung und NMR-Spektren von Alkyl-arylphosphinothioformamiden, R(Ph)PC(S)NHMe / Phosphine-Substituted Chelate Ligands, XXIII [1] Synthesis and NMR Spectra of Alkyl-arylphosphinothioformamides, R(Ph)PC(S)NHMe". Zeitschrift für Naturforschung B 42, n.º 1 (1 de janeiro de 1987): 77–83. http://dx.doi.org/10.1515/znb-1987-0115.

Texto completo da fonte
Resumo:
Abstract A series of alkyl-arylsubstituted N-methyl phosphinothioformamides, R(Ph)PC(S)NHMe (2 a-g), with varying bulkiness of the alkyl rest was synthesized from the racemic secondary phosphines 1a-g and methyl isothiocyanate. 1H and 13C NMR spectra of 2a−g reveal signal sets of diastereotopic nuclei due to the asymmetry of the molecule. The chemical shift and coupling constants were confirmed by simulation in case of 2b, c. The vicinal 31P−13C couplings of the menthyl and neomenthyl compounds 2f, g show an "anti-Karplus" behaviour (3J(gauche) > 3J(trans)) and allow the conformational assignment of the alicyclic group. The 31P chemical shifts of 2a−d give a linear correlation with the cone angle of the alkyl substituents quoted from literature.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Plunkett, Shane, Corey H. Basch, Samantha O. Santana e Mary P. Watson. "Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl–Alkyl Cross-Couplings". Journal of the American Chemical Society 141, n.º 6 (25 de janeiro de 2019): 2257–62. http://dx.doi.org/10.1021/jacs.9b00111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Bernauer, Josef, Guojiao Wu e Axel Jacobi von Wangelin. "Iron-catalysed allylation–hydrogenation sequences as masked alkyl–alkyl cross-couplings". RSC Advances 9, n.º 54 (2019): 31217–23. http://dx.doi.org/10.1039/c9ra07604b.

Texto completo da fonte
Resumo:
An iron-catalysed allylation of organomagnesium reagents (alkyl, aryl) with simple allyl acetates proceeds under mild conditions (Fe(OAc)2 or Fe(acac)2, Et2O, r.t.) to furnish various alkene and styrene derivatives.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Achonduh, George T., Niloufar Hadei, Cory Valente, Stephanie Avola, Christopher J. O'Brien e Michael G. Organ. "On the role of additives in alkyl–alkyl Negishi cross-couplings". Chemical Communications 46, n.º 23 (2010): 4109. http://dx.doi.org/10.1039/c002759f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Baker, Kristen M., Diana Lucas Baca, Shane Plunkett, Mitchell E. Daneker e Mary P. Watson. "Engaging Alkenes and Alkynes in Deaminative Alkyl–Alkyl and Alkyl–Vinyl Cross-Couplings of Alkylpyridinium Salts". Organic Letters 21, n.º 23 (25 de novembro de 2019): 9738–41. http://dx.doi.org/10.1021/acs.orglett.9b03899.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Owston, Nathan A., e Gregory C. Fu. "Asymmetric Alkyl−Alkyl Cross-Couplings of Unactivated Secondary Alkyl Electrophiles: Stereoconvergent Suzuki Reactions of Racemic Acylated Halohydrins". Journal of the American Chemical Society 132, n.º 34 (setembro de 2010): 11908–9. http://dx.doi.org/10.1021/ja105924f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Cauley, Anthony N., Melda Sezen-Edmonds, Eric M. Simmons e Cullen L. Cavallaro. "Increasing saturation: development of broadly applicable photocatalytic Csp2–Csp3 cross-couplings of alkyl trifluoroborates and (hetero)aryl bromides for array synthesis". Reaction Chemistry & Engineering 6, n.º 9 (2021): 1666–76. http://dx.doi.org/10.1039/d1re00192b.

Texto completo da fonte
Resumo:
HTE was used to systematically investigate the reaction of alkyl trifluoroborates and aryl bromides under photocatalytic conditions. General conditions were identified for coupling of activated primary, benzylic and secondary alkyl trifluoroborates.
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Xu, Meng-Yu, e Bin Xiao. "Germatranes and carbagermatranes: (hetero)aryl and alkyl coupling partners in Pd-catalyzed cross-coupling reactions". Chemical Communications 57, n.º 89 (2021): 11764–75. http://dx.doi.org/10.1039/d1cc04373k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Branchaud, Bruce P., e William D. Detlefsen. "Cobaloxime-catalyzed radical alkyl-styryl cross couplings". Tetrahedron Letters 32, n.º 44 (outubro de 1991): 6273–76. http://dx.doi.org/10.1016/0040-4039(91)80145-v.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Pound, Sarah M., e Mary P. Watson. "Asymmetric synthesis via stereospecific C–N and C–O bond activation of alkyl amine and alcohol derivatives". Chemical Communications 54, n.º 87 (2018): 12286–301. http://dx.doi.org/10.1039/c8cc07093h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Bisz, Elwira, e Michal Szostak. "Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorobenzoates with Alkyl Grignard Reagents". Molecules 25, n.º 1 (6 de janeiro de 2020): 230. http://dx.doi.org/10.3390/molecules25010230.

Texto completo da fonte
Resumo:
Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts for cross-coupling in the catalytic system, employing benign urea ligands in the place of reprotoxic NMP (NMP = N-methyl-2-pyrrolidone). It is notable that high selectivity for the cross-coupling is achieved in the presence of hydrolytically-labile and prone to nucleophilic addition phenolic ester C(acyl)–O bonds. The reaction provides access to alkyl-functionalized aryl benzoates. The examination of various O-coordinating ligands demonstrates the high activity of urea ligands in promoting the cross-coupling versus nucleophilic addition to the ester C(acyl)–O bond. The method showcases the functional group tolerance of iron-catalyzed Kumada cross-couplings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Owston, Nathan A., e Gregory C. Fu. "ChemInform Abstract: Asymmetric Alkyl-Alkyl Cross-Couplings of Unactivated Secondary Alkyl Electrophiles: Stereoconvergent Suzuki Reactions of Racemic Acylated Halohydrins." ChemInform 42, n.º 6 (13 de janeiro de 2011): no. http://dx.doi.org/10.1002/chin.201106074.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Villanueva-Kasis, Oscar, Denisse A. de Loera, Sandra L. Castañón-Alonso, Armando Domínguez-Ortiz, Leticia Lomas-Romero, Ilich A. Ibarra, Eduardo González-Zamora e Alejandro Islas-Jácome. "Efficient Synthesis of New α-β-Unsaturated Alkyl-Ester Peptide-Linked Chiral Amines". Proceedings 9, n.º 1 (14 de novembro de 2018): 34. http://dx.doi.org/10.3390/ecsoc-22-05769.

Texto completo da fonte
Resumo:
Four new α-β-unsaturated alkyl-ester chiral amines were synthesized in excellent yields (77–95%) via peptide couplings from their corresponding α-β-unsaturated alkyl-ester anilines and N-Boc protected chiral aminoacids. To our delight, these polyfunctionalized compounds are being used as starting reagents in Ugi-type three-component reactions (Ugi-3CR) together with alkyl- and aryl-aldehydes and a chain-ring tautomerizable amino acid-containing isocyanide to synthesize novel oxazole-based macrocycle precursors. Thus, the aim of this communication is to show our most recent results of the synthesis and use of new and complex chiral amines to assemble macrocyclic polypeptides with potential application in medicinal chemistry, such as the post-surgical antibiotic Vancomycin.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Penner, Glenn H. "Conformational preference and internal rotation about the C1—Cα bond in phenylacetaldehyde and some benzyl alkyl ketones from 1H nuclear magnetic resonance and abinitio molecular orbital calculations". Canadian Journal of Chemistry 65, n.º 3 (1 de março de 1987): 538–40. http://dx.doi.org/10.1139/v87-094.

Texto completo da fonte
Resumo:
Analysis of the 1H nuclear magnetic resonance spectra of the benzyl moieties in phenylacetaldehyde, benzyl methyl ketone, benzyl ethyl ketone, benzyl isopropyl ketone, and 3,5-dichlorobenzyl tert-butyl ketone yields the long-range couplings between ring and α protons. These stereospecific couplings change very little upon replacement of the aldehydic hydrogen by various alkyl groups. The couplings for all the molecules studied fall within the ranges 4J(CH2, Ho) = −0.566 ± 0.008 Hz, 5J(CH2, Hm) = 0.278 ± 0.002 Hz, and 6J(CH2, Hp) = −0.409 ± 0.010 Hz, suggesting that in the ketones the alkyl group prefers to be trans to the phenyl ring and does not interfere with rotation about the C1—Cα bond. The long-range couplings are consistent with a potential function V(θ) = 8.4 ± 1.2 sin2 θ for two-fold rotation about the C1—Cα bond; θ is the angle between the carbonyl and benzene ring plane. Abinitio molecular orbital calculations on phenylacetaldehyde at the STO-3G level with the C=O bond cis to the phenyl group yield a potential of V(θ) = (8.65 ± 0.73) sin2 θ + (1.27 ± 0.80) sin2 2θ, rather close to the experimental potential but with a small fourfold component. The spin–spin coupling constant between the aldehydic and α protons displays a solvent dependence consistent with previously reported values. The insensitivity of 4J(CH2, Ho), 5J(CH2, Hm), and 6J(CH2, Hp) to solvent suggests that [Formula: see text] is very weakly dependent on the rotation of the aldehyde group.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Crisp, GT, e S. Papadopoulos. "Palladium-Mediated Transformations of Heteroaromatic Triflates". Australian Journal of Chemistry 42, n.º 2 (1989): 279. http://dx.doi.org/10.1071/ch9890279.

Texto completo da fonte
Resumo:
Quinolyl triflates and isoquinolyl triflates undergo palladium-catalysed couplings with organostannanes, organoaluminiums and activated alkenes. The range of organic groups which can be transferred to the heteroaromatic substrate includes aryl, vinyl, alkynyl, alkyl and hydride.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

El-Maiss, Janwa, Tharwat Mohy El Dine, Chung-Shin Lu, Iyad Karamé, Ali Kanj, Kyriaki Polychronopoulou e Janah Shaya. "Recent Advances in Metal-Catalyzed Alkyl–Boron (C(sp3)–C(sp2)) Suzuki-Miyaura Cross-Couplings". Catalysts 10, n.º 3 (5 de março de 2020): 296. http://dx.doi.org/10.3390/catal10030296.

Texto completo da fonte
Resumo:
Boron chemistry has evolved to become one of the most diverse and applied fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in the synthetic toolbox of researchers in academia and industry. The development of novel sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative applications of otherwise challenging organic adducts in different fields. This review describes the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and 9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

BRANCHAUD, B. P., e W. D. DETLEFSEN. "ChemInform Abstract: Cobaloxime-Catalyzed Radical Alkyl-Styryl Cross Couplings." ChemInform 23, n.º 26 (21 de agosto de 2010): no. http://dx.doi.org/10.1002/chin.199226051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Davis, Mia, Mathias O. Senge e Oliver B. Locos. "Anthracenylporphyrins". Zeitschrift für Naturforschung B 65, n.º 12 (1 de dezembro de 2010): 1472–84. http://dx.doi.org/10.1515/znb-2010-1211.

Texto completo da fonte
Resumo:
We report the synthesis and characterization of meso-anthracenylporphyrins with zinc and nickel metal centers. A variety of novel aryl and alkyl meso-substituted anthracenylporphyrins were synthesized via step-wise Suzuki cross-coupling reactions using anthracenyl boronates. This method was compared to standard syntheses based on condensation reactions to yield anthracenylporphyrins of the A2B2- and A3B-type. The work was complemented by the synthesis of a number of the functionalized anthracene derivatives via Suzuki couplings. Selected systems were subjected to single-crystal X-ray analysis which revealed an unusual close packing for nickel(II) anthracenylporphyrins.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Parmar, Dixit, Lena Henkel, Josef Dib e Magnus Rueping. "Iron catalysed cross-couplings of azetidines – application to the formal synthesis of a pharmacologically active molecule". Chemical Communications 51, n.º 11 (2015): 2111–13. http://dx.doi.org/10.1039/c4cc09337b.

Texto completo da fonte
Resumo:
A protocol for the cross-coupling of azetidines with aryl, heteroaryl, vinyl and alkyl Grignard reagents has been developed under iron catalysis. In addition, a short formal synthesis of a pharmacologically active molecule was demonstrated.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Paul, Avishek, Mark D. Smith e Aaron K. Vannucci. "Photoredox-Assisted Reductive Cross-Coupling: Mechanistic Insight into Catalytic Aryl–Alkyl Cross-Couplings". Journal of Organic Chemistry 82, n.º 4 (2 de fevereiro de 2017): 1996–2003. http://dx.doi.org/10.1021/acs.joc.6b02830.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Zhou, Jianrong (Steve), e Gregory C. Fu. "Cross-Couplings of Unactivated Secondary Alkyl Halides: Room-Temperature Nickel-Catalyzed Negishi Reactions of Alkyl Bromides and Iodides". Journal of the American Chemical Society 125, n.º 48 (dezembro de 2003): 14726–27. http://dx.doi.org/10.1021/ja0389366.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Zhou, Jianrong (Steve), e Gregory C. Fu. "Suzuki Cross-Couplings of Unactivated Secondary Alkyl Bromides and Iodides". Journal of the American Chemical Society 126, n.º 5 (fevereiro de 2004): 1340–41. http://dx.doi.org/10.1021/ja039889k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Guérinot, Amandine, e Janine Cossy. "Cobalt-Catalyzed Cross-Couplings between Alkyl Halides and Grignard Reagents". Accounts of Chemical Research 53, n.º 7 (10 de julho de 2020): 1351–63. http://dx.doi.org/10.1021/acs.accounts.0c00238.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

McMahon, Caitlin M., e Erik J. Alexanian. "Palladium-Catalyzed Heck-Type Cross-Couplings of Unactivated Alkyl Iodides". Angewandte Chemie 126, n.º 23 (24 de abril de 2014): 6084–87. http://dx.doi.org/10.1002/ange.201311323.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

McMahon, Caitlin M., e Erik J. Alexanian. "Palladium-Catalyzed Heck-Type Cross-Couplings of Unactivated Alkyl Iodides". Angewandte Chemie International Edition 53, n.º 23 (23 de abril de 2014): 5974–77. http://dx.doi.org/10.1002/anie.201311323.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Ivanov, Mikhail Yu, Sergey A. Prikhod’ko, Olga D. Bakulina, Alexey S. Kiryutin, Nicolay Yu Adonin e Matvey V. Fedin. "Validation of Structural Grounds for Anomalous Molecular Mobility in Ionic Liquid Glasses". Molecules 26, n.º 19 (26 de setembro de 2021): 5828. http://dx.doi.org/10.3390/molecules26195828.

Texto completo da fonte
Resumo:
Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron–nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Wang, Nai-Xing, Yalan Xing, Lei-Yang Zhang e Yue-Hua Wu. "C(sp3)–H Bond Functionalization of Alcohols, Ketones, Nitriles, Ethers and Amides using tert-Butyl Hydroperoxide as a Radical Initiator". Synlett 32, n.º 01 (31 de julho de 2020): 23–29. http://dx.doi.org/10.1055/s-0040-1706406.

Texto completo da fonte
Resumo:
The C(sp3)–H bond is found widely in organic molecules. Recently, the functionalization of C(sp3)–H bonds has developed into a powerful tool for augmenting highly functionalized frameworks in organic synthesis. Based on the results obtained in our group, the present account mainly summarizes recent progress on the functionalization of C(sp3)–H bonds of aliphatic alcohols, ketones, alkyl nitriles, and ethers with styrene or cinnamic acid using tert-butyl hydroperoxide (TBHP) as a radical initiator.1 Introduction2 Oxidative Coupling of Styrenes with C(sp3)–H Bonds3 Decarboxylative Cross-Couplings of α,β-Unsaturated Carboxylic Acids with C(sp3)–H Bonds4 Conclusions
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Powell, David A., Toshihide Maki e Gregory C. Fu. "Stille Cross-Couplings of Unactivated Secondary Alkyl Halides Using Monoorganotin Reagents". Journal of the American Chemical Society 127, n.º 2 (janeiro de 2005): 510–11. http://dx.doi.org/10.1021/ja0436300.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

O’Neil, Gregory W., e Alois Fürstner. "B-Alkyl Suzuki couplings for the stereoselective synthesis of substituted pyrans". Chemical Communications, n.º 36 (2008): 4294. http://dx.doi.org/10.1039/b806898d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Malhotra, Sushant, Pamela S. Seng, Stefan G. Koenig, Alan J. Deese e Kevin A. Ford. "Chemoselective sp2-sp3 Cross-Couplings: Iron-Catalyzed Alkyl Transfer to Dihaloaromatics". Organic Letters 15, n.º 14 (5 de julho de 2013): 3698–701. http://dx.doi.org/10.1021/ol401508u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Eckhardt, Matthias, e Gregory C. Fu. "The First Applications of Carbene Ligands in Cross-Couplings of Alkyl Electrophiles: Sonogashira Reactions of Unactivated Alkyl Bromides and Iodides". Journal of the American Chemical Society 125, n.º 45 (novembro de 2003): 13642–43. http://dx.doi.org/10.1021/ja038177r.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sedláček, Ondřej, Petra Břehová, Radek Pohl, Antonín Holý e Zlatko Janeba. "The synthesis of the 8-C-substituted 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP) derivatives by diverse cross-coupling reactions". Canadian Journal of Chemistry 89, n.º 4 (abril de 2011): 488–98. http://dx.doi.org/10.1139/v11-001.

Texto completo da fonte
Resumo:
Diisopropyl 8-bromo-2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine was used as a starting material for the synthesis of the 8-C-substituted 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP) analogues. A systematic screening of diverse cross-coupling reactions was carried out. Stille, Suzuki–Miyaura, Negishi, and Sonogashira cross-couplings, as well as Pd-catalysed reactions with trialkylaluminiums, were employed for the introduction of various alkyl, alkenyl, alkynyl, aryl, and hetaryl substituents to the C-8 position of the 2,6-diaminopurine moiety. In contrast to the potent parent compound PMEDAP, which exhibits potent antiretroviral and antitumor activity, none of the sixteen newly synthesized 8-C-substituted analogues of PMEDAP showed any specific antiviral activity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Cornella, Josep, e Matthew O’Neill. "Retaining Alkyl Nucleophile Regiofidelity in Transition-Metal-Mediated Cross-Couplings to Aryl Electrophiles". Synthesis 50, n.º 20 (10 de setembro de 2018): 3974–96. http://dx.doi.org/10.1055/s-0037-1609941.

Texto completo da fonte
Resumo:
While the advent of transition-metal catalysis has undoubtedly transformed synthetic chemistry, problems persist with the introduction of secondary and tertiary alkyl nucleophiles into C(sp2) aryl electrophiles. Complications arise from the delicate organometallic intermediates typically invoked by such processes, from which competition between the desired reductive elimination event and the deleterious β-H elimination pathways can lead to undesired isomerization of the incoming nucleophile. Several methods have integrated distinct combinations of metal, ligand, nucleophile, and electrophile to provide solutions to this problem. Despite substantial progress, refinements to current protocols will facilitate the realization of complement reactivity and improved functional group tolerance. These issues have become more pronounced in the context of green chemistry and sustainable catalysis, as well as by the current necessity to develop robust, reliable cross-couplings beyond less explored C(sp2)–C(sp2) constructs. Indeed, the methods discussed herein and the elaborations thereof enable an ‘unlocking’ of accessible topologically enriched chemical space, which is envisioned to influence various domains of application.1 Introduction2 Mechanistic Considerations3 Magnesium Nucleophiles4 Zinc Nucleophiles5 Boron Nucleophiles6 Other Nucleophiles7 Tertiary Nucleophiles8 Reductive Cross-Coupling with in situ Organometallic Formation9 Conclusion
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Taratayko, Andrey I., Yurii I. Glazachev, Ilia V. Eltsov, Elena I. Chernyak e Igor A. Kirilyuk. "3,4-Unsubstituted 2-tert-Butyl-pyrrolidine-1-oxyls with Hydrophilic Functional Groups in the Side Chains". Molecules 27, n.º 6 (16 de março de 2022): 1922. http://dx.doi.org/10.3390/molecules27061922.

Texto completo da fonte
Resumo:
Pyrrolidine nitroxides with four bulky alkyl substituents adjacent to N–O group are known for their high resistance to bioreduction. The 3,4-unsubstituted 2-tert-butyl-2-ethylpyrrolidine-1-oxyls were prepared from the corresponding 2-tert-butyl-1-pyrroline-1-oxides via either the addition of ethinylmagnesium bromide with subsequent hydrogenation or via treatment with ethyllithium. The new nitroxides showed excellent stability to reduction with ascorbate with no evidence for additional large hyperfine couplings in the EPR spectra.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Liu, Lei, Maria Camila Aguilera, Wes Lee, Cassandra R. Youshaw, Michael L. Neidig e Osvaldo Gutierrez. "General method for iron-catalyzed multicomponent radical cascades–cross-couplings". Science 374, n.º 6566 (22 de outubro de 2021): 432–39. http://dx.doi.org/10.1126/science.abj6005.

Texto completo da fonte
Resumo:
Iron links a trio Iron holds particular appeal as a catalytic metal—it is safe and abundant, as well as a mainstay of enzymatic reactivity. Nonetheless, in synthetic construction of carbon-carbon bonds, modern chemists have largely had to rely on rarer metals such as palladium. Liu et al . now report that coordination of iron by a bulky chelating phosphine ligand enables efficient mutual coupling of three different reactants—an alkyl halide, an aryl Grignard, and an olefin—to form two carbon-carbon bonds (see the Perspective by Lefèvre). A combination of Mössbauer spectroscopy, crystallography, and computational simulations illuminates the mechanism. —JSY
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Wilsily, Ashraf, Francesco Tramutola, Nathan A. Owston e Gregory C. Fu. "New Directing Groups for Metal-Catalyzed Asymmetric Carbon–Carbon Bond-Forming Processes: Stereoconvergent Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Electrophiles". Journal of the American Chemical Society 134, n.º 13 (26 de março de 2012): 5794–97. http://dx.doi.org/10.1021/ja301612y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Luo, Yongrui, Yuli Li, Jian Wu, Xiao-Song Xue, John F. Hartwig e Qilong Shen. "Oxidative addition of an alkyl halide to form a stable Cu(III) product". Science 381, n.º 6662 (8 de setembro de 2023): 1072–79. http://dx.doi.org/10.1126/science.adg9232.

Texto completo da fonte
Resumo:
The step that cleaves the carbon-halogen bond in copper-catalyzed cross-coupling reactions remains ill defined because of the multiple redox manifolds available to copper and the instability of the high-valent copper product formed. We report the oxidative addition of α-haloacetonitrile to ionic and neutral copper(I) complexes to form previously elusive but here fully characterized copper(III) complexes. The stability of these complexes stems from the strong Cu−CF 3 bond and the high barrier for C( CF 3 )−C( CH 2 CN ) bond-forming reductive elimination. The mechanistic studies we performed suggest that oxidative addition to ionic and neutral copper(I) complexes proceeds by means of two different pathways: an S N 2-type substitution to the ionic complex and a halogen-atom transfer to the neutral complex. We observed a pronounced ligand acceleration of the oxidative addition, which correlates with that observed in the copper-catalyzed couplings of azoles, amines, or alkynes with alkyl electrophiles.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Lee, Nicholas R., Roscoe T. H. Linstadt, Danielle J. Gloisten, Fabrice Gallou e Bruce H. Lipshutz. "B-Alkyl sp3–sp2 Suzuki–Miyaura Couplings under Mild Aqueous Micellar Conditions". Organic Letters 20, n.º 10 (8 de maio de 2018): 2902–5. http://dx.doi.org/10.1021/acs.orglett.8b00961.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Powell, David A., e Gregory C. Fu. "Nickel-Catalyzed Cross-Couplings of Organosilicon Reagents with Unactivated Secondary Alkyl Bromides". Journal of the American Chemical Society 126, n.º 25 (junho de 2004): 7788–89. http://dx.doi.org/10.1021/ja047433c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Lee, Jae-Young, e Gregory C. Fu. "Room-Temperature Hiyama Cross-Couplings of Arylsilanes with Alkyl Bromides and Iodides". Journal of the American Chemical Society 125, n.º 19 (maio de 2003): 5616–17. http://dx.doi.org/10.1021/ja0349352.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Schwarzwalder, Gregg M., Carson D. Matier e Gregory C. Fu. "Enantioconvergent Cross‐Couplings of Alkyl Electrophiles: The Catalytic Asymmetric Synthesis of Organosilanes". Angewandte Chemie 131, n.º 11 (11 de março de 2019): 3609–12. http://dx.doi.org/10.1002/ange.201814208.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Malhotra, Sushant, Pamela S. Seng, Stefan G. Koenig, Alan J. Deese e Kevin A. Ford. "ChemInform Abstract: Chemoselective sp2-sp3Cross-Couplings: Iron-Catalyzed Alkyl Transfer to Dihaloaromatics." ChemInform 44, n.º 50 (21 de novembro de 2013): no. http://dx.doi.org/10.1002/chin.201350171.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Schwarzwalder, Gregg M., Carson D. Matier e Gregory C. Fu. "Enantioconvergent Cross‐Couplings of Alkyl Electrophiles: The Catalytic Asymmetric Synthesis of Organosilanes". Angewandte Chemie International Edition 58, n.º 11 (11 de março de 2019): 3571–74. http://dx.doi.org/10.1002/anie.201814208.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

McMahon, Caitlin M., e Erik J. Alexanian. "ChemInform Abstract: Palladium-Catalyzed Heck-Type Cross-Couplings of Unactivated Alkyl Iodides." ChemInform 45, n.º 48 (13 de novembro de 2014): no. http://dx.doi.org/10.1002/chin.201448061.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Liang, Yufan, e Gregory C. Fu. "Nickel-Catalyzed Alkyl-Alkyl Cross-Couplings of Fluorinated Secondary Electrophiles: A General Approach to the Synthesis of Compounds having a Perfluoroalkyl Substituent". Angewandte Chemie International Edition 54, n.º 31 (12 de junho de 2015): 9047–51. http://dx.doi.org/10.1002/anie.201503297.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Liang, Yufan, e Gregory C. Fu. "Nickel-Catalyzed Alkyl-Alkyl Cross-Couplings of Fluorinated Secondary Electrophiles: A General Approach to the Synthesis of Compounds having a Perfluoroalkyl Substituent". Angewandte Chemie 127, n.º 31 (12 de junho de 2015): 9175–79. http://dx.doi.org/10.1002/ange.201503297.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia