Artigos de revistas sobre o tema "Alkaline Electrolysers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Alkaline Electrolysers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Therkildsen, Kasper T. "(Invited) Affordable Green Hydrogen from Alkaline Water Electrolysis: An Industrial Perspective". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1692. http://dx.doi.org/10.1149/ma2024-01341692mtgabs.
Texto completo da fonteGórecki, Krzysztof, Małgorzata Górecka e Paweł Górecki. "Modelling Properties of an Alkaline Electrolyser". Energies 13, n.º 12 (13 de junho de 2020): 3073. http://dx.doi.org/10.3390/en13123073.
Texto completo da fonteFelipe Contreras-Vásquez, Luis, Luis Eduardo Escobar-Luna e Henry Alexander Urquizo-Analuisa. "Evaluation of Alkaline and PEM Electrolysers for Green Hydrogen Production from Hydropower in Ecuador". Medwave 23, S1 (1 de setembro de 2023): eUTA395. http://dx.doi.org/10.5867/medwave.2023.s1.uta395.
Texto completo da fonteKuleshov, V. N., S. V. Kurochkin, N. V. Kuleshov, A. A. Gavriluk, M. A. Klimova e S. E. Smirnov. "Hydrophilic fillers for anione exchange membranes of alkaline water electrolyzers". E3S Web of Conferences 389 (2023): 02030. http://dx.doi.org/10.1051/e3sconf/202338902030.
Texto completo da fonteRasten, Egil. "(Invited) Shunt-currents in Alkaline Water-Electrolyzers and Renewable Energy". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1871. http://dx.doi.org/10.1149/ma2024-01341871mtgabs.
Texto completo da fonteSutka, Andris, Martins Vanags e Mairis Iesalnieks. "Decoupled Electrolysis Based on Pseudocapacitive Auxiliary Electrodes: Mechanism and Enhancement Strategies". ECS Meeting Abstracts MA2023-02, n.º 54 (22 de dezembro de 2023): 2543. http://dx.doi.org/10.1149/ma2023-02542543mtgabs.
Texto completo da fonteMaide, Martin, Alise-Valentine Prits, Sreekanth Mandati e Rainer Küngas. "Multi-Functional Alkaline Electrolysis Setup for Industrially Relevant Testing of Cell Components". ECS Meeting Abstracts MA2023-02, n.º 49 (22 de dezembro de 2023): 3274. http://dx.doi.org/10.1149/ma2023-02493274mtgabs.
Texto completo da fonteBorm, Oliver, e Stephen B. Harrison. "Reliable off-grid power supply utilizing green hydrogen". Clean Energy 5, n.º 3 (1 de agosto de 2021): 441–46. http://dx.doi.org/10.1093/ce/zkab025.
Texto completo da fonteDiscepoli, Gabriele, Silvia Barbi, Massimo Milani, Monia Montorsi e Luca Montorsi. "Investigating Sustainable Materials for AEM Electrolysers: Strategies to Improve the Cost and Environmental Impact". Key Engineering Materials 962 (12 de outubro de 2023): 81–92. http://dx.doi.org/10.4028/p-7rkv7m.
Texto completo da fonteAyyub, Mohd Monis, Andrea Serfőző, Balázs Endrődi e Csaba Janaky. "Understanding Performance Fading during CO Electrolysis in Zero Gap Electrolyzers". ECS Meeting Abstracts MA2023-02, n.º 58 (22 de dezembro de 2023): 2804. http://dx.doi.org/10.1149/ma2023-02582804mtgabs.
Texto completo da fonteArtuso, Paola, Rupert Gammon, Fabio Orecchini e Simon J. Watson. "Alkaline electrolysers: Model and real data analysis". International Journal of Hydrogen Energy 36, n.º 13 (julho de 2011): 7956–62. http://dx.doi.org/10.1016/j.ijhydene.2011.01.094.
Texto completo da fonteBera, Cyril, e Magdalena Streckova. "Carbon Fibers Doped by Binary Phosphides as an Electrocatalytic Layer for PEM Electrolysers". Journal of Nano Research 78 (17 de abril de 2023): 97–102. http://dx.doi.org/10.4028/p-o8u8bx.
Texto completo da fonteDenk, Karel, Martin Paidar, Jaromir Hnat e Karel Bouzek. "Potential of Membrane Alkaline Water Electrolysis in Connection with Renewable Power Sources". ECS Meeting Abstracts MA2022-01, n.º 26 (7 de julho de 2022): 1225. http://dx.doi.org/10.1149/ma2022-01261225mtgabs.
Texto completo da fonteMori, Mitja, Tilen Mržljak, Boštjan Drobnič e Mihael Sekavčnik. "Integral Characteristics of Hydrogen Production in Alkaline Electrolysers". Strojniški vestnik – Journal of Mechanical Engineering 10, n.º 59 (15 de outubro de 2013): 585–94. http://dx.doi.org/10.5545/sv-jme.2012.858.
Texto completo da fonteVermeiren, Ph, J. P. Moreels, A. Claes e H. Beckers. "Electrode diaphragm electrode assembly for alkaline water electrolysers". International Journal of Hydrogen Energy 34, n.º 23 (dezembro de 2009): 9305–15. http://dx.doi.org/10.1016/j.ijhydene.2009.09.023.
Texto completo da fonteGarcia-Osorio, Dora Alicia, Hansaem Jang, Bhavin Siritanaratkul e Alexander Cowan. "Water Dissociation Interfaces in Bipolar Membranes for H2 Electrolysers". ECS Meeting Abstracts MA2023-02, n.º 39 (22 de dezembro de 2023): 1891. http://dx.doi.org/10.1149/ma2023-02391891mtgabs.
Texto completo da fonteCaprì, Angela, Irene Gatto, Giuseppe Monforte, Carmelo Lo Vecchio e Vincenzo Baglio. "Anion Exchange Membrane Electrolyser Performance with Ni Ferrite Anodes Calcined at Different Temperatures". ECS Meeting Abstracts MA2023-01, n.º 36 (28 de agosto de 2023): 2094. http://dx.doi.org/10.1149/ma2023-01362094mtgabs.
Texto completo da fonteKuleshov, Vladimir Nikolaevich, Nikolai Vasil'evich Korovin, Nikolai Vasil'evich Kuleshov, Elena Yanovna Udris e Andrei Nikolaevich Bakhin. "Development of new electrocatalysts for low temperature electrolysis of water". Electrochemical Energetics 12, n.º 2 (2012): 51–58. http://dx.doi.org/10.18500/1608-4039-2012-12-2-51-58.
Texto completo da fonteMori, Mitja, Rok Stropnik, Mihael Sekavčnik e Andrej Lotrič. "Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies". Sustainability 13, n.º 6 (23 de março de 2021): 3565. http://dx.doi.org/10.3390/su13063565.
Texto completo da fonteLavorante, Maria, Rodrigo Bessone, Samanta Saiquita, Gerardo Imbrioscia e Erica Martinez. "Electrodes for Alkaline Water Electrolysers with Triangle Shape Topology". Jordan Journal of Electrical Engineering 6, n.º 3 (2020): 237. http://dx.doi.org/10.5455/jjee.204-1590965088.
Texto completo da fontePozio, A., M. De Francesco, Z. Jovanovic e S. Tosti. "Pd–Ag hydrogen diffusion cathode for alkaline water electrolysers". International Journal of Hydrogen Energy 36, n.º 9 (maio de 2011): 5211–17. http://dx.doi.org/10.1016/j.ijhydene.2011.01.168.
Texto completo da fonteMaslovara, Sladjana, Dragana Vasic-Anicijevic, Aleksandra Saponjic, Dragica Djurdjevic-Milosevic, Zeljka Nikolic, Vladimir Nikolic e Milica Marceta-Kaninski. "Comparative analysis of in-situ ionic activators for increased energy efficiency process in alkaline electrolysers". Science of Sintering, n.º 00 (2024): 1. http://dx.doi.org/10.2298/sos231116001m.
Texto completo da fontePrits, Alise-Valentine, Martin Maide, Ronald Väli, Mona Tammemägi, Huy Quí Vinh Nguyen, Rainer Küngas e Jaak Nerut. "Bridging the Gap between Laboratory and Industrial Scale Electrochemical Characterisation of Raney Ni Electrodes for Alkaline Water Electrolysis". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1816. http://dx.doi.org/10.1149/ma2024-01341816mtgabs.
Texto completo da fonteARULRAJ, I., e D. TRIVEDI. "Characterization of nickel oxyhydroxide based anodes for alkaline water electrolysers". International Journal of Hydrogen Energy 14, n.º 12 (1989): 893–98. http://dx.doi.org/10.1016/0360-3199(89)90076-1.
Texto completo da fontePletcher, Derek, e Xiaohong Li. "Prospects for alkaline zero gap water electrolysers for hydrogen production". International Journal of Hydrogen Energy 36, n.º 23 (novembro de 2011): 15089–104. http://dx.doi.org/10.1016/j.ijhydene.2011.08.080.
Texto completo da fonteLysenko, Olha, e Valerii Ikonnikov. "Investigation of energy efficiency of hydrogen production in alkaline electrolysers". Technology audit and production reserves 5, n.º 3(73) (31 de outubro de 2023): 11–15. http://dx.doi.org/10.15587/2706-5448.2023.290309.
Texto completo da fonteRusso, Andrea, Jens Oluf Jensen, Mikkel Rykær Kraglund, Wenjing (Angela) Zhang e EunAe Cho. "Catalyst Application in Three-Dimensional Porous Electrodes for Alkaline Electrolysis". ECS Meeting Abstracts MA2023-01, n.º 36 (28 de agosto de 2023): 2006. http://dx.doi.org/10.1149/ma2023-01362006mtgabs.
Texto completo da fonteBoström, Oskar, Seung-Young Choi, Lu Xia, Felix Lohmann-Richters e Patric Jannasch. "(Poster Award - Honorable Mention) Durable Polybenzimidazole Anion Exchange Membranes for Alkaline Water Electrolyzers". ECS Meeting Abstracts MA2023-02, n.º 39 (22 de dezembro de 2023): 1889. http://dx.doi.org/10.1149/ma2023-02391889mtgabs.
Texto completo da fontePandiarajan, T., L. John Berchmans e S. Ravichandran. "Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production". RSC Advances 5, n.º 43 (2015): 34100–34108. http://dx.doi.org/10.1039/c5ra01123j.
Texto completo da fonteProost, Joris. "(Invited) Techno-Economic Aspects of Hydrogen Production from Water Electrolysis". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1735. http://dx.doi.org/10.1149/ma2024-01341735mtgabs.
Texto completo da fonteMironov, Egor A. "Modelling and control of hydrogen production processes based on electrolysis". Vestnik of Samara State Technical University. Technical Sciences Series 31, n.º 2 (1 de agosto de 2023): 70–84. http://dx.doi.org/10.14498/tech.2023.2.6.
Texto completo da fonteUrsúa, Alfredo, Ernesto L. Barrios, Julio Pascual, Idoia San Martín e Pablo Sanchis. "Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements". International Journal of Hydrogen Energy 41, n.º 30 (agosto de 2016): 12852–61. http://dx.doi.org/10.1016/j.ijhydene.2016.06.071.
Texto completo da fonteCruden, Andrew, David Infield, Mahdi Kiaee, Tamunosaki G. Douglas e Amitava Roy. "Development of new materials for alkaline electrolysers and investigation of the potential electrolysis impact on the electrical grid". Renewable Energy 49 (janeiro de 2013): 53–57. http://dx.doi.org/10.1016/j.renene.2012.01.067.
Texto completo da fonteAbellán, Gonzalo, Vicent Lloret e Alvaro Seijas Da Silva. "(Invited) Accelerated Three Electrode Cell (TEC) Testing for Optimizing Electrodes in Conventional Alkaline Electrolysis and Anion Exchange Membrane Water Electrolysis". ECS Meeting Abstracts MA2024-01, n.º 28 (9 de agosto de 2024): 1486. http://dx.doi.org/10.1149/ma2024-01281486mtgabs.
Texto completo da fonteVengatesan, S., S. Santhi, S. Jeevanantham e G. Sozhan. "Quaternized poly (styrene-co-vinylbenzyl chloride) anion exchange membranes for alkaline water electrolysers". Journal of Power Sources 284 (junho de 2015): 361–68. http://dx.doi.org/10.1016/j.jpowsour.2015.02.118.
Texto completo da fonteLi, Xiaohong, Frank C. Walsh e Derek Pletcher. "Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers". Phys. Chem. Chem. Phys. 13, n.º 3 (2011): 1162–67. http://dx.doi.org/10.1039/c0cp00993h.
Texto completo da fontePletcher, Derek, Xiaohong Li e Shaopeng Wang. "A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production". International Journal of Hydrogen Energy 37, n.º 9 (maio de 2012): 7429–35. http://dx.doi.org/10.1016/j.ijhydene.2012.02.013.
Texto completo da fonteSapountzi, F. M., V. Di Palma, G. Zafeiropoulos, H. Penchev, M. A. Verheijen, M. Creatore, F. Ublekov et al. "Overpotential analysis of alkaline and acidic alcohol electrolysers and optimized membrane-electrode assemblies". International Journal of Hydrogen Energy 44, n.º 21 (abril de 2019): 10163–73. http://dx.doi.org/10.1016/j.ijhydene.2019.02.205.
Texto completo da fonteLonis, Francesco, Vittorio Tola e Giorgio Cau. "Performance assessment of integrated energy systems for the production of renewable hydrogen energy carriers". E3S Web of Conferences 197 (2020): 01007. http://dx.doi.org/10.1051/e3sconf/202019701007.
Texto completo da fonteWilliams, Aubry S. R., Benjamin A. W. Mowbray, Xin Lu, Yongwook Kim e Curtis P. Berlinguette. "Design of Bipolar Membranes to Increase CO Formation Rates in Bicarbonate Electrolysers at Low Voltage". ECS Meeting Abstracts MA2023-02, n.º 39 (22 de dezembro de 2023): 1880. http://dx.doi.org/10.1149/ma2023-02391880mtgabs.
Texto completo da fonteMartinho, Diogo Loureiro, Torsten Berning, Mohammadmahdi Abdollahzadehsangroudi, Anders Rønne Rasmussen, Jakob Hærvig e Samuel Simon Araya. "A Three-Dimensional, Multiphysics Model of An Alkaline Electrolyzer". ECS Meeting Abstracts MA2023-02, n.º 41 (22 de dezembro de 2023): 2017. http://dx.doi.org/10.1149/ma2023-02412017mtgabs.
Texto completo da fonteDresp, Sören, Trung Ngo Thanh, Malte Klingenhof, Sven Brückner, Philipp Hauke e Peter Strasser. "Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds". Energy & Environmental Science 13, n.º 6 (2020): 1725–29. http://dx.doi.org/10.1039/d0ee01125h.
Texto completo da fontePollet, Bruno G., Henrik E. Hansen, Svein Sunde, Odne S. Burheim e Frode Seland. "Sonochemical synthesis of electrocatalysts for low-temperature water electrolysers". Journal of the Acoustical Society of America 151, n.º 4 (abril de 2022): A38. http://dx.doi.org/10.1121/10.0010583.
Texto completo da fonteChade, Daniel, Leonard Berlouis, David Infield, Andrew Cruden, Peter Tommy Nielsen e Troels Mathiesen. "Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers". International Journal of Hydrogen Energy 38, n.º 34 (novembro de 2013): 14380–90. http://dx.doi.org/10.1016/j.ijhydene.2013.09.012.
Texto completo da fonteFerriday, T. B., S. N. Sampathkumar, P. H. Middleton e J. Van Herle. "Investigation of Wet-Preparation Methods of Nickel Foam For Alkaline Water Electrolysis". Journal of Physics: Conference Series 2430, n.º 1 (1 de fevereiro de 2023): 012002. http://dx.doi.org/10.1088/1742-6596/2430/1/012002.
Texto completo da fonteLarrea, Carlos, Juan Ramón Avilés-Moreno e Pilar Ocón. "Strategies to Enhance CO2 Electrochemical Reduction from Reactive Carbon Solutions". Molecules 28, n.º 4 (18 de fevereiro de 2023): 1951. http://dx.doi.org/10.3390/molecules28041951.
Texto completo da fonteScandurra, Antonino, Maria Censabella, Antonino Gulino, Maria Grazia Grimaldi e Francesco Ruffino. "Electro-Sorption of Hydrogen by Platinum, Palladium and Bimetallic Pt-Pd Nanoelectrode Arrays Synthesized by Pulsed Laser Ablation". Micromachines 13, n.º 6 (18 de junho de 2022): 963. http://dx.doi.org/10.3390/mi13060963.
Texto completo da fontede Groot, Arend, Sara Fabrizio, Giulia Marcandali, Harshraj Gali, Jan Snajdr, Bryan T. G. de Goeij, Dimitris Ntagkras e Simone Dussi. "(Invited) Looking Beyond the Stack: A Systems Engineering Approach to Optimize Stack and System Design of Electrolysers". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1865. http://dx.doi.org/10.1149/ma2024-01341865mtgabs.
Texto completo da fonteARULRAJ, I., e V. VENKATESAN. "Characterization of nickel-molybdenum and nickel-molybdenum-iron alloy coatings as cathodes for alkaline water electrolysers". International Journal of Hydrogen Energy 13, n.º 4 (1988): 215–23. http://dx.doi.org/10.1016/0360-3199(88)90088-2.
Texto completo da fonteKiaee, Mahdi, David Infield e Andrew Cruden. "Utilisation of alkaline electrolysers in existing distribution networks to increase the amount of integrated wind capacity". Journal of Energy Storage 16 (abril de 2018): 8–20. http://dx.doi.org/10.1016/j.est.2017.12.018.
Texto completo da fonte