Literatura científica selecionada sobre o tema "Alkaline Electrolysers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Alkaline Electrolysers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Alkaline Electrolysers"
Therkildsen, Kasper T. "(Invited) Affordable Green Hydrogen from Alkaline Water Electrolysis: An Industrial Perspective". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1692. http://dx.doi.org/10.1149/ma2024-01341692mtgabs.
Texto completo da fonteGórecki, Krzysztof, Małgorzata Górecka e Paweł Górecki. "Modelling Properties of an Alkaline Electrolyser". Energies 13, n.º 12 (13 de junho de 2020): 3073. http://dx.doi.org/10.3390/en13123073.
Texto completo da fonteFelipe Contreras-Vásquez, Luis, Luis Eduardo Escobar-Luna e Henry Alexander Urquizo-Analuisa. "Evaluation of Alkaline and PEM Electrolysers for Green Hydrogen Production from Hydropower in Ecuador". Medwave 23, S1 (1 de setembro de 2023): eUTA395. http://dx.doi.org/10.5867/medwave.2023.s1.uta395.
Texto completo da fonteKuleshov, V. N., S. V. Kurochkin, N. V. Kuleshov, A. A. Gavriluk, M. A. Klimova e S. E. Smirnov. "Hydrophilic fillers for anione exchange membranes of alkaline water electrolyzers". E3S Web of Conferences 389 (2023): 02030. http://dx.doi.org/10.1051/e3sconf/202338902030.
Texto completo da fonteRasten, Egil. "(Invited) Shunt-currents in Alkaline Water-Electrolyzers and Renewable Energy". ECS Meeting Abstracts MA2024-01, n.º 34 (9 de agosto de 2024): 1871. http://dx.doi.org/10.1149/ma2024-01341871mtgabs.
Texto completo da fonteSutka, Andris, Martins Vanags e Mairis Iesalnieks. "Decoupled Electrolysis Based on Pseudocapacitive Auxiliary Electrodes: Mechanism and Enhancement Strategies". ECS Meeting Abstracts MA2023-02, n.º 54 (22 de dezembro de 2023): 2543. http://dx.doi.org/10.1149/ma2023-02542543mtgabs.
Texto completo da fonteMaide, Martin, Alise-Valentine Prits, Sreekanth Mandati e Rainer Küngas. "Multi-Functional Alkaline Electrolysis Setup for Industrially Relevant Testing of Cell Components". ECS Meeting Abstracts MA2023-02, n.º 49 (22 de dezembro de 2023): 3274. http://dx.doi.org/10.1149/ma2023-02493274mtgabs.
Texto completo da fonteBorm, Oliver, e Stephen B. Harrison. "Reliable off-grid power supply utilizing green hydrogen". Clean Energy 5, n.º 3 (1 de agosto de 2021): 441–46. http://dx.doi.org/10.1093/ce/zkab025.
Texto completo da fonteDiscepoli, Gabriele, Silvia Barbi, Massimo Milani, Monia Montorsi e Luca Montorsi. "Investigating Sustainable Materials for AEM Electrolysers: Strategies to Improve the Cost and Environmental Impact". Key Engineering Materials 962 (12 de outubro de 2023): 81–92. http://dx.doi.org/10.4028/p-7rkv7m.
Texto completo da fonteAyyub, Mohd Monis, Andrea Serfőző, Balázs Endrődi e Csaba Janaky. "Understanding Performance Fading during CO Electrolysis in Zero Gap Electrolyzers". ECS Meeting Abstracts MA2023-02, n.º 58 (22 de dezembro de 2023): 2804. http://dx.doi.org/10.1149/ma2023-02582804mtgabs.
Texto completo da fonteTeses / dissertações sobre o assunto "Alkaline Electrolysers"
Serdaroglu, Gulcan. "Controlling the microstructure of the porous nickel electrodes in alkaline electrolysers". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49141/.
Texto completo da fonteKiaee, Mahdi. "Investigation of the cumulative impact of alkaline electrolysers on electrical power systems". Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26885.
Texto completo da fonteChade, Daniel Szymon. "Performance and reliability studies of Atmospheric Plasma Spraying Raney nickel electrodes for alkaline electrolysers". Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25532.
Texto completo da fonteStemp, Michael C. "Homogeneous catalysis in alkaline water electrolysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/MQ45844.pdf.
Texto completo da fonteLumanauw, Daniel. "Hydrogen bubble characterization in alkaline water electrolysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0017/MQ54129.pdf.
Texto completo da fonteFiorentini, Diego. "Development of a polymeric diaphragm for Alkaline Water Electrolysis". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Encontre o texto completo da fonteBradwell, David (David Johnathon). "Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62741.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references (p. 198-206).
Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved in molten ZnCl 2 at 500 0C was first investigated by two- and three-electrode electrochemical analysis techniques. The electrochemical behavior of the melt, thermodynamic properties, and kinetic properties were evaluated. A single cell battery was constructed, demonstrating for the first time the simultaneous extraction of two different liquid metals onto electrodes of opposite polarity. Although a low open circuit voltage and high material costs make this approach unsuitable for the intended application, it was found that this electrochemical phenomenon could be utilized in a new recycling process for bimetallic semiconductors. A second type of liquid metal battery was investigated that utilized the potential difference generated by metal alloys of different compositions. MgjlSb cells of this nature were operated at 700 °C, demonstrating that liquid Sb can serve as a positive electrode. Ca,MgIIBi cells also of this nature were studied and a Ca,Mg liquid alloy was successfully used as the negative electrode, permitting the use of Ca as the electroactive species. Thermodynamic and battery performance results suggest that Ca,MgIISb cells have the potential to achieve a sufficient cell voltage, utilize earth abundant materials, and meet the demanding cost and cycle-life requirements for use in grid-scale energy storage applications.
by David J. Bradwell.
Ph.D.
Davids, Wafeeq. "Consolidated Nanomaterials Synthesized using Nickel micro-wires and Carbon Nanotubes". Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_9685_1264387931.
Texto completo da fonteLaw, Joseph. "The role of vanadium as a homogeneous catalyst in alkaline water electrolysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0020/MQ54216.pdf.
Texto completo da fonteHaug, Philipp [Verfasser]. "Experimental and theoretical investigation of gas purity in alkaline water electrolysis / Philipp Haug". München : Verlag Dr. Hut, 2019. http://d-nb.info/1181514061/34.
Texto completo da fonteLivros sobre o assunto "Alkaline Electrolysers"
Stemp, Michael Colin. Homogeneous catalysis in alkaline water electrolysis. Ottawa: National Library of Canada, 1997.
Encontre o texto completo da fonteLumanauw, Daniel. Hydrogen bubble characterization in alkaline water electrolysis. Ottawa: National Library of Canada, 2000.
Encontre o texto completo da fonteLaw, Joseph. The role of vanadium as a homogeneous catalyst in alkaline water electrolysis. Ottawa: National Library of Canada, 1998.
Encontre o texto completo da fonteSuzuki, Hiroyuki. Production and electrochemical behaviour of Ni-Co-Mo-B amorphous alloys for alkaline water electrolysis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1995.
Encontre o texto completo da fonteH, Wendt, e Commission of the European Communities. Directorate-General for Science, Research and Development., eds. Nickel-net supported cermet diaphragms and distance-free electrode-diaphragm sandwiches for advanced alkaline water electrolysis. Luxembourg: Commission of the European Communities, 1985.
Encontre o texto completo da fonteScale up of distance free electrode diaphragm units for advanced alkaline electrolysis and fuel cell technology. Luxembourg: Commission of the European Communities, 1986.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Alkaline Electrolysers"
Phillips, Robert, William J. F. Gannon e Charles W. Dunnill. "Chapter 2. Alkaline Electrolysers". In Electrochemical Methods for Hydrogen Production, 28–58. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016049-00028.
Texto completo da fonteMamlouk, M., e M. Manolova. "Chapter 6. Alkaline Anionic Exchange Membrane Water Electrolysers". In Electrochemical Methods for Hydrogen Production, 180–252. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016049-00180.
Texto completo da fonteGuillet, Nicolas, e Pierre Millet. "Alkaline Water Electrolysis". In Hydrogen Production, 117–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527676507.ch4.
Texto completo da fonteIto, Kohei, Hua Li e Yan Ming Hao. "Alkaline Water Electrolysis". In Green Energy and Technology, 137–42. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56042-5_9.
Texto completo da fontePeng, Shengjie. "Alkaline Water Electrolysis". In Electrochemical Hydrogen Production from Water Splitting, 57–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_3.
Texto completo da fonteDeng, Xintao, Fuyuan Yang, Yangyang Li, Jian Dang e Minggao Ouyang. "Thermal Analysis and Optimization of Cold-Start Process of Alkaline Water Electrolysis System". In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 297–311. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_30.
Texto completo da fonteCavaliere, Pasquale. "Alkaline Liquid Electrolyte Water Electrolysis". In Water Electrolysis for Hydrogen Production, 203–32. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37780-8_5.
Texto completo da fonteHaarberg, Geir Martin. "Alkali and Alkaline Earth Metal Production by Molten Salt Electrolysis". In Encyclopedia of Applied Electrochemistry, 21–25. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_451.
Texto completo da fonteZhang, Tao, Lingjun Song, Fuyuan Yang e Yangyang Li. "Study on Configuration and Control Strategy of Electrolyzers in Off-Grid Wind Hydrogen System". In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 364–69. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_35.
Texto completo da fonteZhang, Anran, Ying Ma, Rui Ding e Liming Li. "Alkaline Water Electrolysis at Industrial Scale". In Green Hydrogen Production by Water Electrolysis, 95–107. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003368939-5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Alkaline Electrolysers"
Qiao, Shikang, Yutong Wu e Junbo Zhou. "Simulation of alkaline water electrolysis hydrogen production system based on Aspen Plus". In 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), 493–96. IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10626880.
Texto completo da fonteCrosa, Giampaolo, Maurizio Lubiano e Angela Trucco. "Modelling of PV-Powered Water Electrolysers". In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90906.
Texto completo da fonteParra-Puerto, Andres, Jack Dawson, Mengjun Gong, Javier Rubio-Garcia e Anthony Kucernak. "Carbon Materials for Energy Storage from Redox Flow Batteries to Lithium Sulfur Batteries, Catalyst for Alkaline Electrolysers and Hybrid Redox Flow Batteries". In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.171.
Texto completo da fonted’Amore-Domenech, Rafael, Emilio Navarro, Eleuterio Mora e Teresa J. Leo. "Alkaline Electrolysis at Sea for Green Hydrogen Production: A Solution to Electrolyte Deterioration". In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77209.
Texto completo da fonteMus, Jorben, Bram Vanhoutte, Sam Schotte, Steven Fevery, Steven K. Latre, Michael Kleemann e Frank Buysschaert. "Design and Characterisation of an Alkaline Electrolyser". In 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). IEEE, 2022. http://dx.doi.org/10.1109/icrera55966.2022.9922902.
Texto completo da fonteRabascall, Jordi Béjar, e Gaurav Mirlekar. "Sustainability analysis and simulation of a Polymer Electrolyte Membrane (PEM) electrolyser for green hydrogen production". In 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200015.
Texto completo da fonteSethi, Hamza, Muhammad Zulkefal e Asad Ayub. "Exergy Analysis of an Alkaline Water Electrolysis System". In The 6th Conference on Emerging Materials and Processes (CEMP 2023). Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/materproc2024017013.
Texto completo da fonteReddy, G. N., Sadish Shrestha, Bishesh Acharya, Vijaya Krishna Teja Bangi e Ramesh Guduru. "Analysis of Hydrogen Dry Cell for Alkaline Water Electrolysis". In 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2018. http://dx.doi.org/10.1109/icrera.2018.8566705.
Texto completo da fonteReddy, G. N., Vijaya Krishna Teja Bangi e Ramesh Guduru. "Low-maintenance Solar-hydrogen Generator Using Alkaline Water Electrolysis". In 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2019. http://dx.doi.org/10.1109/icrera47325.2019.8997069.
Texto completo da fonteAlbornoz, Matias, Marco Rivera, Roberto Ramirez, Felipe Varas-Concha e Patrick Wheeler. "Water Splitting Dynamics of High Voltage Pulsed Alkaline Electrolysis". In 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2022. http://dx.doi.org/10.1109/ica-acca56767.2022.10006326.
Texto completo da fonteRelatórios de organizações sobre o assunto "Alkaline Electrolysers"
RIchard Bourgeois, Steven Sanborn e Eliot Assimakopoulos. Alkaline Electrolysis Final Technical Report. Office of Scientific and Technical Information (OSTI), julho de 2006. http://dx.doi.org/10.2172/886689.
Texto completo da fonteXu, Hui, Judith Lattimer, Yamini Mohan e Steve McCatty. High-Temperature Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), setembro de 2020. http://dx.doi.org/10.2172/1826376.
Texto completo da fonteAcevedo, Yaset, Jacob Prosser, Jennie Huya-Kouadio, Kevin McNamara e Brian James. Hydrogen Production Cost with Alkaline Electrolysis. Office of Scientific and Technical Information (OSTI), outubro de 2023. http://dx.doi.org/10.2172/2203367.
Texto completo da fonteKim, Yu Seung. Scalable Elastomeric Membranes for Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), fevereiro de 2018. http://dx.doi.org/10.2172/1423967.
Texto completo da fonteMukundan, Rangachary. Accelerated Stress Test (AST) Development for Advanced Liquid Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), fevereiro de 2022. http://dx.doi.org/10.2172/1844102.
Texto completo da fonteDana R. Swalla. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis. Office of Scientific and Technical Information (OSTI), dezembro de 2008. http://dx.doi.org/10.2172/945378.
Texto completo da fontePengliang, Sun. Carbon Emission Calculation and Benefit Analysis of Hydrogen Production Project by Electrolysis of Alkaline Water. Envirarxiv, setembro de 2021. http://dx.doi.org/10.55800/envirarxiv108.
Texto completo da fonte