Literatura científica selecionada sobre o tema "Algebraic number theory"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Algebraic number theory".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Algebraic number theory"

1

Blackmore, G. W., I. N. Stewart e D. O. Tall. "Algebraic Number Theory". Mathematical Gazette 73, n.º 463 (março de 1989): 65. http://dx.doi.org/10.2307/3618234.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

S., R., e Michael E. Pohst. "Computational Algebraic Number Theory." Mathematics of Computation 64, n.º 212 (outubro de 1995): 1763. http://dx.doi.org/10.2307/2153389.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Karve, Aneesh, e Sebastian Pauli. "GiANT: Graphical Algebraic Number Theory". Journal de Théorie des Nombres de Bordeaux 18, n.º 3 (2006): 721–27. http://dx.doi.org/10.5802/jtnb.569.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lenstra Jr., H. W. "Algorithms in Algebraic Number Theory". Bulletin of the American Mathematical Society 26, n.º 2 (1 de outubro de 1992): 211–45. http://dx.doi.org/10.1090/s0273-0979-1992-00284-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Platonov, V. P., e A. S. Rapinchuk. "Algebraic groups and number theory". Russian Mathematical Surveys 47, n.º 2 (30 de abril de 1992): 133–61. http://dx.doi.org/10.1070/rm1992v047n02abeh000879.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Appleby, Marcus, Steven Flammia, Gary McConnell e Jon Yard. "SICs and Algebraic Number Theory". Foundations of Physics 47, n.º 8 (24 de abril de 2017): 1042–59. http://dx.doi.org/10.1007/s10701-017-0090-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Belabas, Karim. "Topics in computational algebraic number theory". Journal de Théorie des Nombres de Bordeaux 16, n.º 1 (2004): 19–63. http://dx.doi.org/10.5802/jtnb.433.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Schoof, Ren\'e. "Book Review: Algorithmic algebraic number theory". Bulletin of the American Mathematical Society 29, n.º 1 (1 de julho de 1993): 111–14. http://dx.doi.org/10.1090/s0273-0979-1993-00392-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Krishna, Amalendu, e Jinhyun Park. "Algebraic cobordism theory attached to algebraic equivalence". Journal of K-Theory 11, n.º 1 (fevereiro de 2013): 73–112. http://dx.doi.org/10.1017/is013001028jkt210.

Texto completo da fonte
Resumo:
AbstractBased on the algebraic cobordism theory of Levine and Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence.We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the semi-topological K0-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory.We compute our cobordism theory for some low dimensional varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Cremona, J. E., e Henri Cohen. "A Course in Computational Algebraic Number Theory". Mathematical Gazette 78, n.º 482 (julho de 1994): 221. http://dx.doi.org/10.2307/3618596.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Algebraic number theory"

1

Röttger, Christian Gottfried Johannes. "Counting problems in algebraic number theory". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Swanson, Colleen M. "Algebraic number fields and codes /". Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hughes, Garry. "Distribution of additive functions in algebraic number fields". Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

McCoy, Daisy Cox. "Irreducible elements in algebraic number fields". Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Gaertner, Nathaniel Allen. "Special Cases of Density Theorems in Algebraic Number Theory". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33153.

Texto completo da fonte
Resumo:
This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases of results due to the latter theorem for which greatly simplified proofs exist.
Master of Science
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

PASINI, FEDERICO WILLIAM. "Classifying spaces for knots: new bridges between knot theory and algebraic number theory". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/129230.

Texto completo da fonte
Resumo:
In this thesis we discuss how, in the context of knot theory, the classifying space of a knot group for the family of meridians arises naturally. We provide an explicit construction of a model for that space, which is particularly nice in the case of a prime knot. We then show that this classifying space controls the behaviour of the finite branched coverings of the knot. We present a 9-term exact sequence for knot groups that strongly resembles the Poitou-Tate exact sequence for algebraic number fields. Finally, we show that the homology of the classifying space behaves towards the former sequence as Shafarevich groups do towards the latter.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Rozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field". Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Nyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations". Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Yan, Song Yuan. "On the algebraic theories and computations of amicable numbers". Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284133.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Haydon, James Henri. "Étale homotopy sections of algebraic varieties". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c.

Texto completo da fonte
Resumo:
We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme X, analogous to the higher fundamental path 2-groupoids as defined for topological spaces. This invariant is related to previously defined invariants, for example the absolute Galois group of a field, and Grothendieck’s étale fundamental group. The special case of Brauer-Severi varieties is considered, in which case a “sections conjecture” type theorem is proved. It is shown that a Brauer-Severi variety X has a rational point if and only if its étale fundamental 2-groupoid has a special sort of section.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Algebraic number theory"

1

Weiss, Edwin. Algebraic number theory. Mineola, N.Y: Dover Publications, 1998.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Fr"ohlich, A. Algebraic number theory. Cambridge: C.U.P., 1993.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Koch, H. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4684-0296-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Neukirch, Jürgen. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03983-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Jarvis, Frazer. Algebraic Number Theory. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07545-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0853-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Orme, Tall David, ed. Algebraic number theory. 2a ed. London: Chapman and Hall, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Martin, Taylor, ed. Algebraic number theory. Cambridge: Cambridge University Press, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mollin, Richard A. Algebraic number theory. Boca Raton, Fla: CRC Press, 1999.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Algebraic number theory"

1

Geroldinger, Alfred. "Factorizations of algebraic integers". In Number Theory, 63–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086545.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Ireland, Kenneth, e Michael Rosen. "Algebraic Number Theory". In A Classical Introduction to Modern Number Theory, 172–87. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_12.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Stillwell, John. "Algebraic Number Theory". In Undergraduate Texts in Mathematics, 404–30. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4684-9281-1_21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Stillwell, John. "Algebraic Number Theory". In Undergraduate Texts in Mathematics, 439–66. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6053-5_21.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Weil, André. "Algebraic number-fields". In Basic Number Theory, 80–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61945-8_5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Fine, Benjamin, e Gerhard Rosenberger. "Primes and Algebraic Number Theory". In Number Theory, 285–370. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43875-7_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kolmogorov, A. N., e A. P. Yushkevich. "Algebra and Algebraic Number Theory". In Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8293-4_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Bashmakova, I. G., e A. N. Rudakov. "Algebra and Algebraic Number Theory". In Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-5112-1_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bourbaki, Nicolas. "Commutative Algebra. Algebraic Number Theory". In Elements of the History of Mathematics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Koch, H. "Basic Number Theory". In Algebraic Number Theory, 8–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Algebraic number theory"

1

Lam, S. P., e K. P. Shum. "Algebraic Structures and Number Theory". In First International Symposium on Algebraic Structures and Number Theory. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540209.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Huang, Yu-Chih. "Lattice index codes from algebraic number fields". In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282903.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

van Dam, Wim, e Yoshitaka Sasaki. "QUANTUM ALGORITHMS FOR PROBLEMS IN NUMBER THEORY, ALGEBRAIC GEOMETRY, AND GROUP THEORY". In Summer School on Diversities in Quantum Computation/Information. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814425988_0003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Tsuboi, Shoji. "The Euler number of the normalization of an algebraic threefold with ordinary singularities". In Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-17.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Feng, Ke-Qin, e Ke-Zheng Li. "Proceedings of the Special Program at Nankai Institute of Mathematics ALGEBRAIC GEOMETRY and ALGEBRAIC NUMBER THEORY". In Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537681.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Limniotis, Konstantinos, Nicholas Kolokotronis e Nicholas Kalouptsidis. "Constructing Boolean functions in odd number of variables with maximum algebraic immunity". In 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034059.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Xiaowen Xiong, Xia Yang e Chi Ma. "Analysis of the number of even-variable boolean functions with maximum algebraic immunity". In Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1869.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Suleimenov, Ibragim E., e Dinara K. Matrassulova. "Using the Relationship between the Theory of Algebraic Fields and Number Theory for Developing Promising Methods of Digital Signal Processing". In 2022 3rd Asia Conference on Computers and Communications (ACCC). IEEE, 2022. http://dx.doi.org/10.1109/accc58361.2022.00027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Alekseev, Yaroslav, Dima Grigoriev, Edward A. Hirsch e Iddo Tzameret. "Semi-algebraic proofs, IPS lower bounds, and the τ-conjecture: can a natural number be negative?" In STOC '20: 52nd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3357713.3384245.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Li, Z. X., B. Kang, J. B. Gou, Y. X. Chu e M. Yeung. "Fundamentals of Workpiece Localization: Theory and Algorithms". In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0811.

Texto completo da fonte
Resumo:
Abstract In this paper, we present an algebraic algorithm for workpiece localization. First, we formulate the problem as a least-square problem in the configuration space Q = SE(3) × ℝ3n, where SE(3) is the Euclidean group, and n is the number of measurement points to be matched by corresponding home surface points of the workpiece. Then, we use the geometric properties of the Euclidean group to compute for the critical points of the objective function. Doing so we derive an algebraic formula for the optimal Euclidean transformation in terms of the measurement points and the corresponding home surface points. We also give for each measurement point a system of two nonlinear equations from which the corresponding home surface point nearest to the measurement point can be solved. Finally, based on these analytic results we present an iterative algorithm for obtaining the complete solution of the least-square problem.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Algebraic number theory"

1

Xia, Xiang-Gen. Space-Time Coding Using Algebraic Number Theory for Broadband Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, maio de 2008. http://dx.doi.org/10.21236/ada483791.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sultanov, S. R. Electronic textbook " Algebra and number theory. Part 2 "direction of training 02.03.03" Mathematical support and administration of information systems". OFERNIO, junho de 2018. http://dx.doi.org/10.12731/ofernio.2018.23685.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia