Siga este link para ver outros tipos de publicações sobre o tema: Algebraic fields.

Artigos de revistas sobre o tema "Algebraic fields"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Algebraic fields".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

JARDEN, MOSHE, e ALEXANDRA SHLAPENTOKH. "DECIDABLE ALGEBRAIC FIELDS". Journal of Symbolic Logic 82, n.º 2 (junho de 2017): 474–88. http://dx.doi.org/10.1017/jsl.2017.10.

Texto completo da fonte
Resumo:
AbstractWe discuss the connection between decidability of a theory of a large algebraic extensions of ${\Bbb Q}$ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ${\Bbb Q}$ has a decidable existential theory, then within any fixed algebraic closure $\widetilde{\Bbb Q}$ of ${\Bbb Q}$, the field K must be conjugate over ${\Bbb Q}$ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples $\sigma \in {\text{Gal}}\left( {\Bbb Q} \right)^e $ such that the field $\widetilde{\Bbb Q}\left( \sigma \right)$ is primitive recursive in $\widetilde{\Bbb Q}$ and its elementary theory is primitive recursively decidable. Moreover, $\widetilde{\Bbb Q}\left( \sigma \right)$ is PAC and ${\text{Gal}}\left( {\widetilde{\Bbb Q}\left( \sigma \right)} \right)$ is isomorphic to the free profinite group on e generators.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kuz'min, L. V. "Algebraic number fields". Journal of Soviet Mathematics 38, n.º 3 (agosto de 1987): 1930–88. http://dx.doi.org/10.1007/bf01093434.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Praeger, Cheryl E. "Kronecker classes of fields and covering subgroups of finite groups". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 57, n.º 1 (agosto de 1994): 17–34. http://dx.doi.org/10.1017/s1446788700036028.

Texto completo da fonte
Resumo:
AbstractKronecker classes of algebraci number fields were introduced by W. Jehne in an attempt to understand the extent to which the structure of an extension K: k of algebraic number fields was influenced by the decomposition of primes of k over K. He found an important link between Kronecker equivalent field extensions and a certain covering property of their Galois groups. This surveys recent contributions of Group Theory to the understanding of Kronecker equivalence of algebraic number fields. In particular some group theoretic conjectures related to the Kronecker class of an extension of bounded degree are explored.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Chudnovsky, D. V., e G. V. Chudnovsky. "Algebraic complexities and algebraic curves over finite fields". Journal of Complexity 4, n.º 4 (dezembro de 1988): 285–316. http://dx.doi.org/10.1016/0885-064x(88)90012-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bost, Jean-Benoît. "Algebraic leaves of algebraic foliations over number fields". Publications mathématiques de l'IHÉS 93, n.º 1 (setembro de 2001): 161–221. http://dx.doi.org/10.1007/s10240-001-8191-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Chudnovsky, D. V., e G. V. Chudnovsky. "Algebraic complexities and algebraic curves over finite fields". Proceedings of the National Academy of Sciences 84, n.º 7 (1 de abril de 1987): 1739–43. http://dx.doi.org/10.1073/pnas.84.7.1739.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Beyarslan, Özlem, e Ehud Hrushovski. "On algebraic closure in pseudofinite fields". Journal of Symbolic Logic 77, n.º 4 (dezembro de 2012): 1057–66. http://dx.doi.org/10.2178/jsl.7704010.

Texto completo da fonte
Resumo:
AbstractWe study the automorphism group of the algebraic closure of a substructureAof a pseudo-finite fieldF. We show that the behavior of this group, even whenAis large, depends essentially on the roots of unity inF. For almost all completions of the theory of pseudofinite fields, we show that overA, algebraic closure agrees with definable closure, as soon asAcontains the relative algebraic closure of the prime field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Junker, Markus, e Jochen Koenigsmann. "Schlanke Körper (Slim fields)". Journal of Symbolic Logic 75, n.º 2 (junho de 2010): 481–500. http://dx.doi.org/10.2178/jsl/1268917491.

Texto completo da fonte
Resumo:
AbstractWe examine fields in which model theoretic algebraic closure coincides with relative field theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour. For example they are exactly the fields in which algebraic independence is an abstract independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC fields, model complete large fields and henselian valued fields of characteristic 0.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

KEKEÇ, GÜLCAN. "-NUMBERS IN FIELDS OF FORMAL POWER SERIES OVER FINITE FIELDS". Bulletin of the Australian Mathematical Society 101, n.º 2 (29 de julho de 2019): 218–25. http://dx.doi.org/10.1017/s0004972719000832.

Texto completo da fonte
Resumo:
In the field $\mathbb{K}$ of formal power series over a finite field $K$, we consider some lacunary power series with algebraic coefficients in a finite extension of $K(x)$. We show that the values of these series at nonzero algebraic arguments in $\mathbb{K}$ are $U$-numbers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Restuccia, Gaetana. "Algebraic models in different fields". Applied Mathematical Sciences 8 (2014): 8345–51. http://dx.doi.org/10.12988/ams.2014.411922.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

van Hoeij, Mark, e Vivek Pal. "Isomorphisms of algebraic number fields". Journal de Théorie des Nombres de Bordeaux 24, n.º 2 (2012): 293–305. http://dx.doi.org/10.5802/jtnb.797.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Kollár, János. "Algebraic varieties over PAC fields". Israel Journal of Mathematics 161, n.º 1 (outubro de 2007): 89–101. http://dx.doi.org/10.1007/s11856-007-0073-z.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Popescu, Dorin. "Algebraic extensions of valued fields". Journal of Algebra 108, n.º 2 (julho de 1987): 513–33. http://dx.doi.org/10.1016/0021-8693(87)90114-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Andrade, Antonio A., Agnaldo J. Ferrari, José C. Interlando e Robson R. Araujo. "Constructions of Dense Lattices over Number Fields". TEMA (São Carlos) 21, n.º 1 (27 de março de 2020): 57. http://dx.doi.org/10.5540/tema.2020.021.01.57.

Texto completo da fonte
Resumo:
In this work, we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2,3,4,5,6,8 and 12, which are rotated versions of the lattices Lambda_n, for n =2,3,4,5,6,8 and K_12. These algebraic lattices are constructed through canonical homomorphism via Z-modules of the ring of algebraic integers of a number field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Grekhov, M. V. "Integral Models of Algebraic Tori Over Fields of Algebraic Numbers". Journal of Mathematical Sciences 219, n.º 3 (24 de outubro de 2016): 413–26. http://dx.doi.org/10.1007/s10958-016-3117-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Scanlon, Thomas, e José Felipe Voloch. "Difference algebraic subgroups of commutative algebraic groups over finite fields". manuscripta mathematica 99, n.º 3 (1 de julho de 1999): 329–39. http://dx.doi.org/10.1007/s002290050176.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

He, Yang-Hui. "Fields over Fields". inSTEMM Journal 1, S1 (15 de julho de 2022): 15–46. http://dx.doi.org/10.56725/instemm.v1is1.9.

Texto completo da fonte
Resumo:
We investigate certain arithmetic properties of field theories. In particular, we study the vacuum structure of supersymmetric gauge theories as algebraic varieties over number fields of finite characteristic. Parallel to the Plethystic Programme of counting the spectrum of operators from the syzygies of the complex geometry, we construct, based on the zeros of the vacuum moduli space over finite fields, the local and global Hasse-Weil zeta functions, as well as develop the associated Dirichlet expansions. We find curious dualities wherein the geometrical properties and asymptotic behaviour of one gauge theory is governed by the number theoretic nature of another.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Scheicher, Klaus. "β-Expansions in algebraic function fields over finite fields". Finite Fields and Their Applications 13, n.º 2 (abril de 2007): 394–410. http://dx.doi.org/10.1016/j.ffa.2005.08.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Khanduja, Sudesh K. "The discriminant of compositum of algebraic number fields". International Journal of Number Theory 15, n.º 02 (março de 2019): 353–60. http://dx.doi.org/10.1142/s1793042119500167.

Texto completo da fonte
Resumo:
For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Binyamini, Gal. "Bezout-type theorems for differential fields". Compositio Mathematica 153, n.º 4 (13 de março de 2017): 867–88. http://dx.doi.org/10.1112/s0010437x17007035.

Texto completo da fonte
Resumo:
We prove analogs of the Bezout and the Bernstein–Kushnirenko–Khovanskii theorems for systems of algebraic differential conditions over differentially closed fields. Namely, given a system of algebraic conditions on the first $l$ derivatives of an $n$-tuple of functions, which admits finitely many solutions, we show that the number of solutions is bounded by an appropriate constant (depending singly-exponentially on $n$ and $l$) times the volume of the Newton polytope of the set of conditions. This improves a doubly-exponential estimate due to Hrushovski and Pillay. We illustrate the application of our estimates in two diophantine contexts: to counting transcendental lattice points on algebraic subvarieties of semi-abelian varieties, following Hrushovski and Pillay; and to counting the number of intersections between isogeny classes of elliptic curves and algebraic varieties, following Freitag and Scanlon. In both cases we obtain bounds which are singly-exponential (improving the known doubly-exponential bounds) and which exhibit the natural asymptotic growth with respect to the degrees of the equations involved.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Olson, Loren D. "Parametrized units in algebraic number fields". Mathematical Proceedings of the Cambridge Philosophical Society 103, n.º 1 (janeiro de 1988): 15–25. http://dx.doi.org/10.1017/s0305004100064574.

Texto completo da fonte
Resumo:
One of the fundamental problems in algebraic number theory is the construction of units in algebraic number fields. Various authors have considered number fields which are parametrized by an integer variable. They have described units in these fields by polynomial expressions in the variable e.g. the fields ℚ(√[N2 + 1]), Nεℤ, with the units εN = N + √[N2 + l]. We begin this article by formulating a general principle for obtaining units in algebraic function fields and candidates for units in parametrized families of algebraic number fields. We show that many of the cases considered previously in the literature by such authors as Bernstein [2], Neubrand [8], and Stender [ll] fall in under this principle. Often the results may be obtained much more easily than before. We then examine the connection between parametrized cubic fields and elliptic curves. In §4 we consider parametrized quadratic fields, a situation previously studied by Neubrand [8]. We conclude in §5 by examining the effect of parametrizing the torsion structure on an elliptic curve at the same time.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Kaliman, Shulim, Frank Kutzschebauch e Matthias Leuenberger. "Complete algebraic vector fields on affine surfaces". International Journal of Mathematics 31, n.º 03 (14 de janeiro de 2020): 2050018. http://dx.doi.org/10.1142/s0129167x20500184.

Texto completo da fonte
Resumo:
Let [Formula: see text] be the subgroup of the group [Formula: see text] of holomorphic automorphisms of a normal affine algebraic surface [Formula: see text] generated by elements of flows associated with complete algebraic vector fields. Our main result is a classification of all normal affine algebraic surfaces [Formula: see text] quasi-homogeneous under [Formula: see text] in terms of the dual graphs of the boundaries [Formula: see text] of their SNC-completions [Formula: see text].
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Miller, Russell. "d-computable categoricity for algebraic fields". Journal of Symbolic Logic 74, n.º 4 (dezembro de 2009): 1325–51. http://dx.doi.org/10.2178/jsl/1254748694.

Texto completo da fonte
Resumo:
AbstractWe use the Low Basis Theorem of Jockusch and Soare to show that all computable algebraic fields are d-computably categorical for a particular Turing degree d with d′ = 0″, but that not all such fields are 0′-computably categorical. We also prove related results about algebraic fields with splitting algorithms, and fields of finite transcendence degree over ℚ.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Narkiewicz, W. "Polynomial cycles in algebraic number fields". Colloquium Mathematicum 58, n.º 1 (1989): 151–55. http://dx.doi.org/10.4064/cm-58-1-151-155.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Luo, Zhaohua. "Kodaira Dimension of Algebraic Function Fields". American Journal of Mathematics 109, n.º 4 (agosto de 1987): 669. http://dx.doi.org/10.2307/2374609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Lettl, Günter. "Thue equations over algebraic function fields". Acta Arithmetica 117, n.º 2 (2005): 107–23. http://dx.doi.org/10.4064/aa117-2-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Kojima, Hisashi. "Galois extensions of algebraic function fields". Tohoku Mathematical Journal 42, n.º 2 (1990): 149–61. http://dx.doi.org/10.2748/tmj/1178227651.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Chen, Lu, e Tobias Fritz. "An algebraic approach to physical fields". Studies in History and Philosophy of Science Part A 89 (outubro de 2021): 188–201. http://dx.doi.org/10.1016/j.shpsa.2021.08.011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Gładki, Paweł, e Mateusz Pulikowski. "Gauss Congruences in Algebraic Number Fields". Annales Mathematicae Silesianae 36, n.º 1 (17 de janeiro de 2022): 53–56. http://dx.doi.org/10.2478/amsil-2022-0002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Waterman, P. L., e C. Maclachlan. "Fuchsian groups and algebraic number fields". Transactions of the American Mathematical Society 287, n.º 1 (1 de janeiro de 1985): 353. http://dx.doi.org/10.1090/s0002-9947-1985-0766224-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Hirschfeldt, Denis R., Ken Kramer, Russell Miller e Alexandra Shlapentokh. "Categoricity properties for computable algebraic fields". Transactions of the American Mathematical Society 367, n.º 6 (20 de outubro de 2014): 3981–4017. http://dx.doi.org/10.1090/s0002-9947-2014-06094-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Sancho de Salas, Juan B. "Tangent algebraic subvarieties of vector fields". Transactions of the American Mathematical Society 357, n.º 9 (7 de outubro de 2004): 3509–23. http://dx.doi.org/10.1090/s0002-9947-04-03584-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Semaev, Igor. "Sparse Algebraic Equations over Finite Fields". SIAM Journal on Computing 39, n.º 2 (janeiro de 2009): 388–409. http://dx.doi.org/10.1137/070700371.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Forbes, G. W., D. J. Butler, R. L. Gordon e A. A. Asatryan. "Algebraic corrections for paraxial wave fields". Journal of the Optical Society of America A 14, n.º 12 (1 de dezembro de 1997): 3300. http://dx.doi.org/10.1364/josaa.14.003300.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Dixon, John D. "Computing subfields in algebraic number fields". Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 49, n.º 3 (dezembro de 1990): 434–48. http://dx.doi.org/10.1017/s1446788700032432.

Texto completo da fonte
Resumo:
AbstractLet K:= Q(α) be an algebraic number field which is given by specifying the minimal polynomial f(X) for α over Q. We describe a procedure for finding the subfields L of K by constructing pairs (w(X), g(X)) of polynomials over Q such that L= Q(w(α)) and g(X) is the minimal polynomial for w(α). The construction uses local information obtained from the Frobenius-Chebotarev theorem about the Galois group Gal(f), and computations over p-adic extensions of Q.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Emiris, Ioannis Z., Angelos Mantzaflaris e Bernard Mourrain. "Voronoi diagrams of algebraic distance fields". Computer-Aided Design 45, n.º 2 (fevereiro de 2013): 511–16. http://dx.doi.org/10.1016/j.cad.2012.10.043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lu, M., D. Wan, L. P. Wang e X. D. Zhang. "Algebraic Cayley graphs over finite fields". Finite Fields and Their Applications 28 (julho de 2014): 43–56. http://dx.doi.org/10.1016/j.ffa.2014.01.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Abouzahra, M., e L. Lewin. "The polylogarithm in algebraic number fields". Journal of Number Theory 21, n.º 2 (outubro de 1985): 214–44. http://dx.doi.org/10.1016/0022-314x(85)90052-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Haran, Dan. "Hilbertian fields under separable algebraic extensions". Inventiones Mathematicae 137, n.º 1 (1 de junho de 1999): 113–26. http://dx.doi.org/10.1007/s002220050325.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

INGRAM, PATRICK, VALÉRY MAHÉ, JOSEPH H. SILVERMAN, KATHERINE E. STANGE e MARCO STRENG. "ALGEBRAIC DIVISIBILITY SEQUENCES OVER FUNCTION FIELDS". Journal of the Australian Mathematical Society 92, n.º 1 (fevereiro de 2012): 99–126. http://dx.doi.org/10.1017/s1446788712000092.

Texto completo da fonte
Resumo:
AbstractIn this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field has only finitely many terms lacking a primitive divisor.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Fein, Burton, e Murray Schacher. "Brauer groups of algebraic function fields". Journal of Algebra 103, n.º 2 (outubro de 1986): 454–65. http://dx.doi.org/10.1016/0021-8693(86)90146-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Coutinho, S. C., e L. Menasché Schechter. "Algebraic solutions of plane vector fields". Journal of Pure and Applied Algebra 213, n.º 1 (janeiro de 2009): 144–53. http://dx.doi.org/10.1016/j.jpaa.2008.06.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Endo, Shizuo, e Ming-Chang Kang. "Function fields of algebraic tori revisited". Asian Journal of Mathematics 21, n.º 2 (2017): 197–224. http://dx.doi.org/10.4310/ajm.2017.v21.n2.a1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Palmer, David, David Bommes e Justin Solomon. "Algebraic Representations for Volumetric Frame Fields". ACM Transactions on Graphics 39, n.º 2 (14 de abril de 2020): 1–17. http://dx.doi.org/10.1145/3366786.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Landau, Susan. "Factoring Polynomials over Algebraic Number Fields". SIAM Journal on Computing 14, n.º 1 (fevereiro de 1985): 184–95. http://dx.doi.org/10.1137/0214015.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Philip, G. M., C. Gregory Skilbeck e D. F. Watson. "Algebraic dispersion fields on ternary diagrams". Mathematical Geology 19, n.º 3 (abril de 1987): 171–81. http://dx.doi.org/10.1007/bf00897745.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Shapiro, Harold N., e Alexandra Shlapentokh. "Diophantine relationships between algebraic number fields". Communications on Pure and Applied Mathematics 42, n.º 8 (dezembro de 1989): 1113–22. http://dx.doi.org/10.1002/cpa.3160420805.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Fein, B., e M. Schacher. "Crossed Products over Algebraic Function Fields". Journal of Algebra 171, n.º 2 (janeiro de 1995): 531–40. http://dx.doi.org/10.1006/jabr.1995.1026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Rausch, U. "Character Sums in Algebraic Number Fields". Journal of Number Theory 46, n.º 2 (fevereiro de 1994): 179–95. http://dx.doi.org/10.1006/jnth.1994.1011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Alcázar, Juan Gerardo, Miroslav Lávička e Jan Vršek. "Symmetries of planar algebraic vector fields". Computer Aided Geometric Design 111 (junho de 2024): 102290. http://dx.doi.org/10.1016/j.cagd.2024.102290.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia