Literatura científica selecionada sobre o tema "Air-Rail substitution"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Air-Rail substitution".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Air-Rail substitution"
Janic, M. "High-speed rail and air passenger transport: A comparison of the operational environmental performance". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 217, n.º 4 (1 de julho de 2003): 259–69. http://dx.doi.org/10.1243/095440903322712865.
Texto completo da fonteKroes, Eric, e Fons Savelberg. "Substitution from Air to High-Speed Rail: The Case of Amsterdam Airport". Transportation Research Record: Journal of the Transportation Research Board 2673, n.º 5 (3 de abril de 2019): 166–74. http://dx.doi.org/10.1177/0361198119839952.
Texto completo da fonteCastillo-Manzano, José I., Rafael Pozo-Barajas e Juan R. Trapero. "Measuring the substitution effects between High Speed Rail and air transport in Spain". Journal of Transport Geography 43 (fevereiro de 2015): 59–65. http://dx.doi.org/10.1016/j.jtrangeo.2015.01.008.
Texto completo da fonteJahan, Nighat, Muhammad Imran Khan e Kamran Abbas Naqvi. "DISAGGREGATING THE DEMAND ELASTICITIES OF RAIL SERVICES AND ITS INFLUENCING FACTOR IN PAKISTAN". Pakistan Journal of Social Research 04, n.º 02 (30 de junho de 2022): 702–16. http://dx.doi.org/10.52567/pjsr.v4i2.523.
Texto completo da fonteBrage-Ardao, Ruben, Daniel J. Graham e Richard J. Anderson. "Determinants of Train Service Costs in Metro Operations". Transportation Research Record: Journal of the Transportation Research Board 2534, n.º 1 (janeiro de 2015): 31–37. http://dx.doi.org/10.3141/2534-05.
Texto completo da fonteConsolo, Valentina, Antonino Musolino, Rocco Rizzo e Luca Sani. "Numerical 3D Simulation of a Full System Air Core Compulsator-Electromagnetic Rail Launcher". Applied Sciences 10, n.º 17 (26 de agosto de 2020): 5903. http://dx.doi.org/10.3390/app10175903.
Texto completo da fontePrussi, Matteo, e Laura Lonza. "Passenger Aviation and High Speed Rail: A Comparison of Emissions Profiles on Selected European Routes". Journal of Advanced Transportation 2018 (27 de junho de 2018): 1–10. http://dx.doi.org/10.1155/2018/6205714.
Texto completo da fonteSun, Chuanwang, Wenyue Zhang, Yuan Luo e Yonghong Xu. "The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China's rail transit construction". Energy Policy 129 (junho de 2019): 949–57. http://dx.doi.org/10.1016/j.enpol.2019.03.005.
Texto completo da fonteWang, Bojun, Aidan O’Sullivan e Andreas W. Schäfer. "Assessing the Impact of High-Speed Rail on Domestic Aviation CO2 Emissions in China". Transportation Research Record: Journal of the Transportation Research Board 2673, n.º 3 (março de 2019): 176–88. http://dx.doi.org/10.1177/0361198119835813.
Texto completo da fonteRobertson, Simon. "A carbon footprint analysis of renewable energy technology adoption in the modal substitution of high-speed rail for short-haul air travel in Australia". International Journal of Sustainable Transportation 12, n.º 4 (setembro de 2017): 299–312. http://dx.doi.org/10.1080/15568318.2017.1363331.
Texto completo da fonteTeses / dissertações sobre o assunto "Air-Rail substitution"
Collet, Charles. "Economic instruments to reduce air transport emissions : prices, framing effects and social norms". Electronic Thesis or Diss., Paris, EHESS, 2024. http://www.theses.fr/2024EHES0170.
Texto completo da fonteThis thesis examines economic and behavioral tools to reduce CO2 emissions from air transport. It is structured into three chapters, each addressing a specific aspect: the impact of taxes on airline tickets, the effect of framing CO2 emissions, and the influence of social signals on the choice between air and rail travel. The first chapter analyzes the effect of passenger taxes on airline tickets in Europe between 2001 and 2019, while accounting for the impact of high-speed rail (HSR). Using a difference-in-differences method applied to air routes between cities, the study estimates the effect of these taxes on air traffic. The results show that a one-euro increase in taxes leads to a 1% decrease in air traffic, while each kilometer of HSR reduces competing air traffic by 0.24%. Over the studied period, passenger taxes contributed to a 3% reduction in aviation-related CO2 emissions, while HSR contributed to a 0.4% reduction. This analysis highlights the combined effect of taxes and investments in rail infrastructure in reducing air traffic emissions. The second chapter explores how framing CO2 emissions can encourage more environmentally friendly transportation choices. A discrete choice experiment evaluates whether a gain-framed message (highlighting the positive impact of reducing emissions) or a loss framed information can steer behaviors toward lower-emissionchoices. The third chapter examines the impact of two incentives: descriptive information on the CO2 emissions of airplanes and a social signal regarding the share of train users compared to air travel. A discrete choice experiment analyzes how these tools influence the choice between flying and taking the train. The social signal, showing a high modal share of train users, has a significant impact, equivalent to a 20% reduction in the price of train tickets. Information on CO2 emissions has an effect equivalent to a 5% price reduction. When combined, these signals show a greater overall effect than their individual impacts. This work underlines the effectiveness of social signals in guiding transport behaviors. It offers concrete policy implications, suggesting the combined use of incentives to maximize their effectiveness without diminishing returns. Thus, this thesis provides empirical evidence on the impact of CO2 emission reduction policies in the air transport sector. It demonstrates that passenger taxes, investments in rail infrastructure, loss-framed information on CO2 emissions, and social signals can contribute to significant behavioral changes, offering insights for effective policy interventions that combine complementary instruments
Capítulos de livros sobre o assunto "Air-Rail substitution"
Givoni, Moshe, Frédéric Dobruszkes e Igor Lugo. "Uncovering the Real Potential for Air–Rail Substitution: An Exploratory Analysis". In Energy, Transport, & the Environment, 495–512. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2717-8_27.
Texto completo da fonteLee, Peggy Daniels, George VandeWerken e Raj Selladurai. "Exploring the Airline-High Speed Rail Collaboration Model". In Advances in Civil and Industrial Engineering, 144–54. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0102-2.ch007.
Texto completo da fonteDobruszkes, Frédéric, e Moshe Givoni. "Competition, Integration, Substitution: Myths and Realities Concerning the Relationship between High-Speed Rail and Air Transport in Europe". In Sustainable Aviation Futures, 175–97. Emerald Group Publishing Limited, 2013. http://dx.doi.org/10.1108/s2044-9941(2013)0000004008.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Air-Rail substitution"
Takada, Kazuyuki, Kota Miyauchi e Makoto Fujiu. "Substitution effect of high speed rail for air transport in case of continuous flight cancellations". In Fifth International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2018. http://dx.doi.org/10.5592/co/cetra.2018.837.
Texto completo da fonteRedtenbacher, Christoph, Constantin Kiesling, Maximilian Malin, Andreas Wimmer, Jose V. Pastor e Mattia Pinotti. "Potential and Limitations of Dual Fuel Operation of High Speed Large Engines". In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9359.
Texto completo da fontePrabhakar, Bhaskar, Srinivas Jayaraman, Randy Vander Wal e André Boehman. "Experimental Studies of High Efficiency Combustion With Fumigation of DME and Propane Into Diesel Engine Intake Air". In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19259.
Texto completo da fonteO'Donnell, Patrick, Samuel Kazmouz, Sicong Wu, Muhsin Ameen, Adam Klingbeil, Thomas Lavertu, Vijayaselvan Jayakar, Pushkar Sheth e Sameera Wijeyakulasuriya. "Computational Investigation of Hydrogen-Air Mixing in a Large-Bore Locomotive Dual Fuel Engine". In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2694.
Texto completo da fonte