Artigos de revistas sobre o tema "(AIGa)N quantum dots"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "(AIGa)N quantum dots".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Barettin, Daniele, Alexei V. Sakharov, Andrey F. Tsatsulnikov, Andrey E. Nikolaev e Nikolay Cherkashin. "Electromechanically Coupled III-N Quantum Dots". Nanomaterials 13, n.º 2 (5 de janeiro de 2023): 241. http://dx.doi.org/10.3390/nano13020241.
Texto completo da fonteHuault, Thomas, Julien Brault, Franck Natali, Benjamin Damilano, Denis Lefebvre, Rabih Tauk, Mathieu Leroux e Jean Massies. "GaN/Al0.5 Ga0.5 N quantum dots and quantum dashes". physica status solidi (b) 246, n.º 4 (15 de janeiro de 2009): 842–45. http://dx.doi.org/10.1002/pssb.200880614.
Texto completo da fonteRoy, Santanu, Christopher Tuinenga, Fadzai Fungura, Pinar Dagtepe, Viktor Chikan e Jacek Jasinski. "Progress toward Producing n-Type CdSe Quantum Dots: Tin and Indium Doped CdSe Quantum Dots". Journal of Physical Chemistry C 113, n.º 30 (julho de 2009): 13008–15. http://dx.doi.org/10.1021/jp8113946.
Texto completo da fonteGu, Siyong, Chien-Te Hsieh, Yasser Ashraf Gandomi, Jianlin Li, Xing Xing Yue e Jeng-Kuei Chang. "Tailoring fluorescence emissions, quantum yields, and white light emitting from nitrogen-doped graphene and carbon nitride quantum dots". Nanoscale 11, n.º 35 (2019): 16553–61. http://dx.doi.org/10.1039/c9nr05422g.
Texto completo da fonteJeong, Kwang Seob, Zhiyou Deng, Sean Keuleyan, Heng Liu e Philippe Guyot-Sionnest. "Air-Stable n-Doped Colloidal HgS Quantum Dots". Journal of Physical Chemistry Letters 5, n.º 7 (19 de março de 2014): 1139–43. http://dx.doi.org/10.1021/jz500436x.
Texto completo da fonteMcCarthy, S. A., J. B. Wang e P. C. Abbott. "Electronic structure calculation for N-electron quantum dots". Computer Physics Communications 141, n.º 1 (novembro de 2001): 175–204. http://dx.doi.org/10.1016/s0010-4655(01)00401-5.
Texto completo da fonteNaik, M. Jaya Prakash, Sourajit Mohanta, Peetam Mandal e Mitali Saha. "N-Doped Graphene Quantum Dots Using Different Bases". International Journal of Nanoscience 18, n.º 01 (24 de janeiro de 2019): 1850017. http://dx.doi.org/10.1142/s0219581x18500175.
Texto completo da fonteShiralizadeh Dezfuli, Amin, Elmira Kohan, Sepand Tehrani Fateh, Neda Alimirzaei, Hamidreza Arzaghi e Michael R. Hamblin. "Organic dots (O-dots) for theranostic applications: preparation and surface engineering". RSC Advances 11, n.º 4 (2021): 2253–91. http://dx.doi.org/10.1039/d0ra08041a.
Texto completo da fonteMansur, Herman S., Alexandra A. P. Mansur, Elisabete Curti e Mauro V. De Almeida. "Bioconjugation of quantum-dots with chitosan and N,N,N-trimethyl chitosan". Carbohydrate Polymers 90, n.º 1 (setembro de 2012): 189–96. http://dx.doi.org/10.1016/j.carbpol.2012.05.022.
Texto completo da fonteZhang, Lin Lin, Jia Huan Wu, Chun Hui Shi e Yu Guang Lv. "Preparation of Cadmium Telluride Quantum Dots Modified by Thioglycolic Acid". Key Engineering Materials 915 (29 de março de 2022): 95–100. http://dx.doi.org/10.4028/p-m485h7.
Texto completo da fonteLi, Junyao, Xiaofeng Liu, Lingyun Wan, Xinming Qin, Wei Hu e Jinlong Yang. "Mixed magnetic edge states in graphene quantum dots". Multifunctional Materials 5, n.º 1 (10 de janeiro de 2022): 014001. http://dx.doi.org/10.1088/2399-7532/ac44fe.
Texto completo da fonteWang, Congxu, Youyi Sun, Jianli Jin, Zhiyuan Xiong, Dan Li, Junru Yao e Yaqing Liu. "Highly selective, rapid-functioning and sensitive fluorescent test paper based on graphene quantum dots for on-line detection of metal ions". Analytical Methods 10, n.º 10 (2018): 1163–71. http://dx.doi.org/10.1039/c7ay02995k.
Texto completo da fonteHuang, Jia Jia, Min Zhi Rong e Ming Qiu Zhang. "Preparation of graphene oxide and polymer-like quantum dots and their one- and two-photon induced fluorescence properties". Physical Chemistry Chemical Physics 18, n.º 6 (2016): 4800–4806. http://dx.doi.org/10.1039/c5cp06582h.
Texto completo da fonteLv, Yuguang, Yuqing Cheng, Kuilin Lv, Guoliang Zhang e Jiang Wu. "Felodipine Determination by a CdTe Quantum Dot-Based Fluorescent Probe". Micromachines 13, n.º 5 (18 de maio de 2022): 788. http://dx.doi.org/10.3390/mi13050788.
Texto completo da fonteHUANG, DAMING, MICHAEL A. RESHCHIKOV e HADIS MORKOÇ. "GROWTH, STRUCTURES, AND OPTICAL PROPERTIES OF III-NITRIDE QUANTUM DOTS". International Journal of High Speed Electronics and Systems 12, n.º 01 (março de 2002): 79–110. http://dx.doi.org/10.1142/s0129156402001137.
Texto completo da fonteVeljković, Dj, M. Tadić e F. M. Peeters. "Intersublevel Absorption in Stacked n-Type Doped Self-Assembled Quantum Dots". Materials Science Forum 494 (setembro de 2005): 37–42. http://dx.doi.org/10.4028/www.scientific.net/msf.494.37.
Texto completo da fonteMa, Lin, Muhammad Sajid, Pingping Liu, Na Na, Dacheng He, Xueyuan Xiao e Jin Ouyang. "Effects of N,N,N′,N′-tetramethylethylenediamine on the properties of CdTe quantum dots". Journal of Materials Chemistry 21, n.º 35 (2011): 13299. http://dx.doi.org/10.1039/c1jm11446h.
Texto completo da fontePillar-Little, Timothy, e Doo Young Kim. "Differentiating the impact of nitrogen chemical states on optical properties of nitrogen-doped graphene quantum dots". RSC Adv. 7, n.º 76 (2017): 48263–67. http://dx.doi.org/10.1039/c7ra09252k.
Texto completo da fonteOu, Shih-Fu, Ya-Yun Zheng, Sin-Jen Lee, Shyi-Tien Chen, Chien-Hui Wu, Chien-Te Hsieh, Ruey-Shin Juang, Pei-Zhen Peng e Yi-Huang Hsueh. "N-Doped Carbon Quantum Dots as Fluorescent Bioimaging Agents". Crystals 11, n.º 7 (6 de julho de 2021): 789. http://dx.doi.org/10.3390/cryst11070789.
Texto completo da fonteSauvage, S., P. Boucaud, F. H. Julien, J. M. Gérard e V. Thierry-Mieg. "Intraband absorption in n-doped InAs/GaAs quantum dots". Applied Physics Letters 71, n.º 19 (10 de novembro de 1997): 2785–87. http://dx.doi.org/10.1063/1.120133.
Texto completo da fonteSaidi, Wissam A. "Oxygen Reduction Electrocatalysis Using N-Doped Graphene Quantum-Dots". Journal of Physical Chemistry Letters 4, n.º 23 (22 de novembro de 2013): 4160–65. http://dx.doi.org/10.1021/jz402090d.
Texto completo da fonteElmaghraoui, D., M. Triki, S. Jaziri, G. Muñoz-Matutano, M. Leroux e J. Martinez-Pastor. "Excitonic complexes in GaN/(Al,Ga)N quantum dots". Journal of Physics: Condensed Matter 29, n.º 10 (1 de fevereiro de 2017): 105302. http://dx.doi.org/10.1088/1361-648x/aa57d5.
Texto completo da fonteSchumann, O., L. Geelhaar, H. Riechert, H. Cerva e G. Abstreiter. "Morphology and optical properties of InAs(N) quantum dots". Journal of Applied Physics 96, n.º 5 (setembro de 2004): 2832–40. http://dx.doi.org/10.1063/1.1775050.
Texto completo da fonteShangguan, W. Z., T. C. Au Yeung e Y. B. Yu. "Electronic transport through N quantum dots under DC bias". Physica B: Condensed Matter 308-310 (dezembro de 2001): 1117–20. http://dx.doi.org/10.1016/s0921-4526(01)00902-4.
Texto completo da fonteBrault, Julien, Samuel Matta, Thi-Huong Ngo, Daniel Rosales, Mathieu Leroux, Benjamin Damilano, Mohamed Al Khalfioui et al. "Ultraviolet light emitting diodes using III-N quantum dots". Materials Science in Semiconductor Processing 55 (novembro de 2016): 95–101. http://dx.doi.org/10.1016/j.mssp.2016.02.014.
Texto completo da fonteMelnychuk, Christopher, e Philippe Guyot-Sionnest. "Auger Suppression in n-Type HgSe Colloidal Quantum Dots". ACS Nano 13, n.º 9 (22 de agosto de 2019): 10512–19. http://dx.doi.org/10.1021/acsnano.9b04608.
Texto completo da fonteChang, Woo Je, Kyu-Young Park, Yizhou Zhu, Christopher Wolverton, Mark C. Hersam e Emily A. Weiss. "n-Doping of Quantum Dots by Lithium Ion Intercalation". ACS Applied Materials & Interfaces 12, n.º 32 (15 de julho de 2020): 36523–29. http://dx.doi.org/10.1021/acsami.0c09366.
Texto completo da fonteSergent, S., J. C. Moreno, E. Frayssinet, Y. Laaroussi, S. Chenot, J. Renard, D. Sam-Giao et al. "GaN quantum dots in (Al,Ga)N-based Microdisks". Journal of Physics: Conference Series 210 (1 de fevereiro de 2010): 012005. http://dx.doi.org/10.1088/1742-6596/210/1/012005.
Texto completo da fonteDaugherty, Michael C., Siyong Gu, Doug S. Aaron, Ryan E. Kelly, Yasser Ashraf Gandomi e Chien-Te Hsieh. "Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries". Nanoscale 12, n.º 14 (2020): 7834–42. http://dx.doi.org/10.1039/d0nr00188k.
Texto completo da fonteIbrayev, N. Kh. "SPECTRAL AND LUMINESCENT PROPERTIES OF CARBON QUANTUM DOTS FUNCTIONALIZED WITH N- AND S-CONTAINING GROUPS". Eurasian Physical Technical Journal 18, n.º 2 (11 de junho de 2021): 12–17. http://dx.doi.org/10.31489/2021no2/12-17.
Texto completo da fonteLee, Kyu Seung, Jaeho Shim, Hyunbok Lee, Sang-Youp Yim, Basavaraj Angadi, Byungkwon Lim e Dong Ick Son. "Unveiling the composite structures of emissive consolidated p–i–n junction nanocells for white light emission". Nanoscale 10, n.º 29 (2018): 13867–74. http://dx.doi.org/10.1039/c8nr01842a.
Texto completo da fonteZhukov A. E., Kryzhanovskaya N. V., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A., Kalyuzhyy N. A., Zubov F. I. e Maximov M. V. "Model for speed performance of quantum-dot waveguide photodiode". Semiconductors 57, n.º 3 (2023): 211. http://dx.doi.org/10.21883/sc.2023.03.56238.4783.
Texto completo da fonteKhanna, P. K., R. Gokhale e V. V. V. S. Subbarao. "Stable light emission from cadmium sulphide quantum dots in N,N′-dimethylformamide". Materials Letters 57, n.º 16-17 (maio de 2003): 2489–93. http://dx.doi.org/10.1016/s0167-577x(02)01299-5.
Texto completo da fonteZhao, Ping, Bo Jin, Qingchun Zhang e Rufang Peng. "Facile synthesis of quantum dots/TiO2 photocatalyst with superior photocatalytic activity: the effect of carbon nitride quantum dots and N-doped carbon dots". Research on Chemical Intermediates 47, n.º 12 (18 de outubro de 2021): 5229–47. http://dx.doi.org/10.1007/s11164-021-04595-4.
Texto completo da fonteQiu, Jijun, Binbin Weng, Lance L. McDowell e Zhisheng Shi. "Low-cost uncooled MWIR PbSe quantum dots photodiodes". RSC Advances 9, n.º 72 (2019): 42516–23. http://dx.doi.org/10.1039/c9ra07664f.
Texto completo da fonteHao, Ya-Nan, Hui-Lin Guo, Lei Tian e Xiaofeng Kang. "Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots". RSC Advances 5, n.º 54 (2015): 43750–55. http://dx.doi.org/10.1039/c5ra07745a.
Texto completo da fonteWang, Zhen, Zhaosheng Hu, Muhammad Akmal Kamarudin, Gaurav Kapil, Atul Tripathi, Qing Shen, Kenji Yoshino, Takashi Minemoto, Sham S. Pandey e Shuzi Hayase. "Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots". Solar Energy 174 (novembro de 2018): 399–408. http://dx.doi.org/10.1016/j.solener.2018.09.026.
Texto completo da fonteZhang, Shu, Xibo Pei, Yiyuan Xue, Jingyuan Xiong e Jian Wang. "Bio-safety assessment of carbon quantum dots, N-doped and folic acid modified carbon quantum dots: A systemic comparison". Chinese Chemical Letters 31, n.º 6 (junho de 2020): 1654–59. http://dx.doi.org/10.1016/j.cclet.2019.09.018.
Texto completo da fonteYANG, LIJU, e YANBIN LI. "Quantum Dots as Fluorescent Labels for Quantitative Detection of Salmonella Typhimurium in Chicken Carcass Wash Water". Journal of Food Protection 68, n.º 6 (1 de junho de 2005): 1241–45. http://dx.doi.org/10.4315/0362-028x-68.6.1241.
Texto completo da fonteShrivastava, Keshav N. "Quantum Hall Effect in AlGaAs and Graphite Quantum Dots". Advanced Materials Research 667 (março de 2013): 1–9. http://dx.doi.org/10.4028/www.scientific.net/amr.667.1.
Texto completo da fonteShi, Chong, e Xian-Yong Wei. "Microwave-Assisted Grafting of Coal onto Nitrogen-Doped Carbon Dots with a High Quantum Yield and Enhanced Photoluminescence Properties". Molecules 29, n.º 6 (18 de março de 2024): 1349. http://dx.doi.org/10.3390/molecules29061349.
Texto completo da fonteKryzhanovskaya N.V., Blokhin S.A., Makhov I. S., Moiseev E. I., Nadtochiy A. M., Fominykh N. A., Mintairov S. A. et al. "Investigation of a p-i-n photodetector with an absorbing medium based on InGaAs/GaAs quantum well-dots". Semiconductors 57, n.º 3 (2023): 198. http://dx.doi.org/10.21883/sc.2023.03.56236.4727.
Texto completo da fonteDu, Liang, Neda Arabzadeh Nosratabad, Zhicheng Jin, Chengqi Zhang, Sisi Wang, Banghao Chen e Hedi Mattoussi. "Luminescent Quantum Dots Stabilized by N-Heterocyclic Carbene Polymer Ligands". Journal of the American Chemical Society 143, n.º 4 (15 de janeiro de 2021): 1873–84. http://dx.doi.org/10.1021/jacs.0c10592.
Texto completo da fonteBelyaev, A. E., S. A. Vitusevich, L. Eaves, P. C. Main, M. Henini, A. Forster, W. Reetz e S. V. Danylyuk. "Photoresponse spectra in p-i-n diodes containing quantum dots". Nanotechnology 13, n.º 1 (22 de janeiro de 2002): 94–96. http://dx.doi.org/10.1088/0957-4484/13/1/320.
Texto completo da fonteLu, Haipeng, Gerard M. Carroll, Xihan Chen, Dinesh K. Amarasinghe, Nathan R. Neale, Elisa M. Miller, Peter C. Sercel, Federico A. Rabuffetti, Alexander L. Efros e Matthew C. Beard. "n-Type PbSe Quantum Dots via Post-Synthetic Indium Doping". Journal of the American Chemical Society 140, n.º 42 (26 de setembro de 2018): 13753–63. http://dx.doi.org/10.1021/jacs.8b07910.
Texto completo da fonteLi, Ming, Wenbin Wu, Wencai Ren, Hui-Ming Cheng, Nujiang Tang, Wei Zhong e Youwei Du. "Synthesis and upconversion luminescence of N-doped graphene quantum dots". Applied Physics Letters 101, n.º 10 (3 de setembro de 2012): 103107. http://dx.doi.org/10.1063/1.4750065.
Texto completo da fonteCortez, S., A. Jbeli, X. Marie, O. Krebs, R. Ferreira, T. Amand, P. Voisin e J. M. Gérard. "Spin polarization dynamics in n-doped InAs/GaAs quantum dots". Physica E: Low-dimensional Systems and Nanostructures 13, n.º 2-4 (março de 2002): 508–11. http://dx.doi.org/10.1016/s1386-9477(02)00181-9.
Texto completo da fonteKong, Jing, Chongwu Zhou, Erhan Yenilmez e Hongjie Dai. "Alkaline metal-doped n-type semiconducting nanotubes as quantum dots". Applied Physics Letters 77, n.º 24 (11 de dezembro de 2000): 3977–79. http://dx.doi.org/10.1063/1.1331088.
Texto completo da fonteFerguson, Andrew J., David G. Hasko, H. Ahmed e David A. Williams. "Variable coupling in n-type silicon–germanium double quantum dots". Applied Physics Letters 82, n.º 25 (23 de junho de 2003): 4492–94. http://dx.doi.org/10.1063/1.1577826.
Texto completo da fonteSyperek, M., R. Kudrawiec, M. Baranowski, G. Sȩk, J. Misiewicz, D. Bisping, B. Marquardt, A. Forchel e M. Fischer. "Time resolved photoluminescence of In(N)As quantum dots embedded in GaIn(N)As/GaAs quantum well". Applied Physics Letters 96, n.º 4 (25 de janeiro de 2010): 041911. http://dx.doi.org/10.1063/1.3299258.
Texto completo da fonte