Artigos de revistas sobre o tema "Adversarial bandits"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Adversarial bandits".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Lu, Shiyin, Guanghui Wang e Lijun Zhang. "Stochastic Graphical Bandits with Adversarial Corruptions". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de maio de 2021): 8749–57. http://dx.doi.org/10.1609/aaai.v35i10.17060.
Texto completo da fontePacchiano, Aldo, Heinrich Jiang e Michael I. Jordan. "Robustness Guarantees for Mode Estimation with an Application to Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de maio de 2021): 9277–84. http://dx.doi.org/10.1609/aaai.v35i10.17119.
Texto completo da fonteWang, Zhiwei, Huazheng Wang e Hongning Wang. "Stealthy Adversarial Attacks on Stochastic Multi-Armed Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de março de 2024): 15770–77. http://dx.doi.org/10.1609/aaai.v38i14.29506.
Texto completo da fonteEsfandiari, Hossein, Amin Karbasi, Abbas Mehrabian e Vahab Mirrokni. "Regret Bounds for Batched Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de maio de 2021): 7340–48. http://dx.doi.org/10.1609/aaai.v35i8.16901.
Texto completo da fonteChen, Cheng, Canzhe Zhao e Shuai Li. "Simultaneously Learning Stochastic and Adversarial Bandits under the Position-Based Model". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junho de 2022): 6202–10. http://dx.doi.org/10.1609/aaai.v36i6.20569.
Texto completo da fonteWang, Lingda, Bingcong Li, Huozhi Zhou, Georgios B. Giannakis, Lav R. Varshney e Zhizhen Zhao. "Adversarial Linear Contextual Bandits with Graph-Structured Side Observations". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de maio de 2021): 10156–64. http://dx.doi.org/10.1609/aaai.v35i11.17218.
Texto completo da fonteWachel, Pawel, e Cristian Rojas. "An Adversarial Approach to Adaptive Model Predictive Control". Journal of Advances in Applied & Computational Mathematics 9 (19 de setembro de 2022): 135–46. http://dx.doi.org/10.15377/2409-5761.2022.09.10.
Texto completo da fonteXu, Xiao, e Qing Zhao. "Memory-Constrained No-Regret Learning in Adversarial Multi-Armed Bandits". IEEE Transactions on Signal Processing 69 (2021): 2371–82. http://dx.doi.org/10.1109/tsp.2021.3070201.
Texto completo da fonteShi, Chengshuai, e Cong Shen. "On No-Sensing Adversarial Multi-Player Multi-Armed Bandits With Collision Communications". IEEE Journal on Selected Areas in Information Theory 2, n.º 2 (junho de 2021): 515–33. http://dx.doi.org/10.1109/jsait.2021.3076027.
Texto completo da fonteTae, Ki Hyun, Hantian Zhang, Jaeyoung Park, Kexin Rong e Steven Euijong Whang. "Falcon: Fair Active Learning Using Multi-Armed Bandits". Proceedings of the VLDB Endowment 17, n.º 5 (janeiro de 2024): 952–65. http://dx.doi.org/10.14778/3641204.3641207.
Texto completo da fonteCheung, Wang Chi, David Simchi-Levi e Ruihao Zhu. "Hedging the Drift: Learning to Optimize Under Nonstationarity". Management Science 68, n.º 3 (março de 2022): 1696–713. http://dx.doi.org/10.1287/mnsc.2021.4024.
Texto completo da fonteGuan, Ziwei, Kaiyi Ji, Donald J. Bucci Jr., Timothy Y. Hu, Joseph Palombo, Michael Liston e Yingbin Liang. "Robust Stochastic Bandit Algorithms under Probabilistic Unbounded Adversarial Attack". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 4036–43. http://dx.doi.org/10.1609/aaai.v34i04.5821.
Texto completo da fonteLattimore, Tor. "Improved regret for zeroth-order adversarial bandit convex optimisation". Mathematical Statistics and Learning 2, n.º 3 (16 de outubro de 2020): 311–34. http://dx.doi.org/10.4171/msl/17.
Texto completo da fonteZhao, Haihong, Xinbin Li, Song Han, Lei Yan e Xinping Guan. "Adaptive OFDM underwater acoustic transmission: An adversarial bandit approach". Neurocomputing 385 (abril de 2020): 148–59. http://dx.doi.org/10.1016/j.neucom.2019.12.063.
Texto completo da fonteEsfandiari, Hossein, MohammadTaghi HajiAghayi, Brendan Lucier e Michael Mitzenmacher. "Online Pandora’s Boxes and Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 1885–92. http://dx.doi.org/10.1609/aaai.v33i01.33011885.
Texto completo da fonteVural, Nuri Mert, Hakan Gokcesu, Kaan Gokcesu e Suleyman S. Kozat. "Minimax Optimal Algorithms for Adversarial Bandit Problem With Multiple Plays". IEEE Transactions on Signal Processing 67, n.º 16 (15 de agosto de 2019): 4383–98. http://dx.doi.org/10.1109/tsp.2019.2928952.
Texto completo da fonteGokcesu, Kaan, e Suleyman Serdar Kozat. "An Online Minimax Optimal Algorithm for Adversarial Multiarmed Bandit Problem". IEEE Transactions on Neural Networks and Learning Systems 29, n.º 11 (novembro de 2018): 5565–80. http://dx.doi.org/10.1109/tnnls.2018.2806006.
Texto completo da fonteWang, Siwei, Haoyun Wang e Longbo Huang. "Adaptive Algorithms for Multi-armed Bandit with Composite and Anonymous Feedback". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de maio de 2021): 10210–17. http://dx.doi.org/10.1609/aaai.v35i11.17224.
Texto completo da fonteBychkov, G. K., D. M. Dvinskikh, A. V. Antsiferova, A. V. Gasnikov e A. V. Lobanov. "Accelerated Zero-Order SGD under High-Order Smoothness and Overparameterized Regime". Nelineinaya Dinamika 20, n.º 5 (2024): 759–88. https://doi.org/10.20537/nd241209.
Texto completo da fonteAvadhanula, Vashist, Andrea Celli, Riccardo Colini-Baldeschi, Stefano Leonardi e Matteo Russo. "Fully Dynamic Online Selection through Online Contention Resolution Schemes". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 6693–700. http://dx.doi.org/10.1609/aaai.v37i6.25821.
Texto completo da fonteDai, Yan, e Longbo Huang. "Adversarial Network Optimization under Bandit Feedback: Maximizing Utility in Non-Stationary Multi-Hop Networks". Proceedings of the ACM on Measurement and Analysis of Computing Systems 8, n.º 3 (10 de dezembro de 2024): 1–48. https://doi.org/10.1145/3700413.
Texto completo da fonteBao, Hongyan, Yufei Han, Yujun Zhou, Xin Gao e Xiangliang Zhang. "Towards Efficient and Domain-Agnostic Evasion Attack with High-Dimensional Categorical Inputs". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 6 (26 de junho de 2023): 6753–61. http://dx.doi.org/10.1609/aaai.v37i6.25828.
Texto completo da fonteYang, Jianyi, e Shaolei Ren. "Robust Bandit Learning with Imperfect Context". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de maio de 2021): 10594–602. http://dx.doi.org/10.1609/aaai.v35i12.17267.
Texto completo da fonteRamanujan, Raghuram, Ashish Sabharwal e Bart Selman. "On Adversarial Search Spaces and Sampling-Based Planning". Proceedings of the International Conference on Automated Planning and Scheduling 20 (25 de maio de 2021): 242–45. http://dx.doi.org/10.1609/icaps.v20i1.13437.
Texto completo da fonteLancewicki, Tal, Aviv Rosenberg e Yishay Mansour. "Learning Adversarial Markov Decision Processes with Delayed Feedback". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junho de 2022): 7281–89. http://dx.doi.org/10.1609/aaai.v36i7.20690.
Texto completo da fonteWang, Peng, Jingju Liu, Dongdong Hou e Shicheng Zhou. "A Cybersecurity Knowledge Graph Completion Method Based on Ensemble Learning and Adversarial Training". Applied Sciences 12, n.º 24 (16 de dezembro de 2022): 12947. http://dx.doi.org/10.3390/app122412947.
Texto completo da fonteXu, Jianyu, Bin Liu, Huadong Mo e Daoyi Dong. "Bayesian adversarial multi-node bandit for optimal smart grid protection against cyber attacks". Automatica 128 (junho de 2021): 109551. http://dx.doi.org/10.1016/j.automatica.2021.109551.
Texto completo da fonteHyeong Soo Chang, Jiaqiao Hu, M. C. Fu e S. I. Marcus. "Adaptive Adversarial Multi-Armed Bandit Approach to Two-Person Zero-Sum Markov Games". IEEE Transactions on Automatic Control 55, n.º 2 (fevereiro de 2010): 463–68. http://dx.doi.org/10.1109/tac.2009.2036333.
Texto completo da fonteKillian, Jackson A., Arpita Biswas, Lily Xu, Shresth Verma, Vineet Nair, Aparna Taneja, Aparna Hegde et al. "Robust Planning over Restless Groups: Engagement Interventions for a Large-Scale Maternal Telehealth Program". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 12 (26 de junho de 2023): 14295–303. http://dx.doi.org/10.1609/aaai.v37i12.26672.
Texto completo da fonteBubeck, Sébastien, Ronen Eldan e Yin Tat Lee. "Kernel-based Methods for Bandit Convex Optimization". Journal of the ACM 68, n.º 4 (30 de junho de 2021): 1–35. http://dx.doi.org/10.1145/3453721.
Texto completo da fonteSudianto, Edi. "Digest: Banding together to battle adversaries has its consequences*". Evolution 73, n.º 6 (24 de abril de 2019): 1320–21. http://dx.doi.org/10.1111/evo.13750.
Texto completo da fonteDoan, Thang, João Monteiro, Isabela Albuquerque, Bogdan Mazoure, Audrey Durand, Joelle Pineau e R. Devon Hjelm. "On-Line Adaptative Curriculum Learning for GANs". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 3470–77. http://dx.doi.org/10.1609/aaai.v33i01.33013470.
Texto completo da fonteAmballa, Chaitanya, Manu K. Gupta e Sanjay P. Bhat. "Computing an Efficient Exploration Basis for Learning with Univariate Polynomial Features". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de maio de 2021): 6636–43. http://dx.doi.org/10.1609/aaai.v35i8.16821.
Texto completo da fonteHan, Song, Xinbin Li, Lei Yan, Jiajie Xu, Zhixin Liu e Xinping Guan. "Joint resource allocation in underwater acoustic communication networks: A game-based hierarchical adversarial multiplayer multiarmed bandit algorithm". Information Sciences 454-455 (julho de 2018): 382–400. http://dx.doi.org/10.1016/j.ins.2018.05.011.
Texto completo da fonteRichie, Rodney C. "Basics of Artificial Intelligence (AI) Modeling". Journal of Insurance Medicine 51, n.º 1 (28 de maio de 2024): 35–40. http://dx.doi.org/10.17849/insm-51-1-35-40.1.
Texto completo da fonteFarina, Gabriele, Robin Schmucker e Tuomas Sandholm. "Bandit Linear Optimization for Sequential Decision Making and Extensive-Form Games". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 6 (18 de maio de 2021): 5372–80. http://dx.doi.org/10.1609/aaai.v35i6.16677.
Texto completo da fonteKamikokuryo, Kenta, Takumi Haga, Gentiane Venture e Vincent Hernandez. "Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement". Sensors 22, n.º 12 (14 de junho de 2022): 4499. http://dx.doi.org/10.3390/s22124499.
Texto completo da fonteMéndez Lara, Francisco Iván. "Francisco Villa en la prensa carrancista (1914-1915). La construcción del adversario". Bibliographica 3, n.º 1 (6 de março de 2020): 211. http://dx.doi.org/10.22201/iib.2594178xe.2020.1.56.
Texto completo da fonteRiou, Matthieu, Bassam Jabaian, Stéphane Huet e Fabrice Lefèvre. "Reinforcement adaptation of an attention-based neural natural language generator for spoken dialogue systems". Dialogue & Discourse 10, n.º 1 (22 de fevereiro de 2019): 1–19. http://dx.doi.org/10.5087/dad.2019.101.
Texto completo da fonteVu, Dong Quan, Patrick Loiseau, Alonso Silva e Long Tran-Thanh. "Path Planning Problems with Side Observations—When Colonels Play Hide-and-Seek". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 02 (3 de abril de 2020): 2252–59. http://dx.doi.org/10.1609/aaai.v34i02.5602.
Texto completo da fonteHe, Jianhao, Feidiao Yang, Jialin Zhang e Lvzhou Li. "Quantum algorithm for online convex optimization". Quantum Science and Technology 7, n.º 2 (17 de março de 2022): 025022. http://dx.doi.org/10.1088/2058-9565/ac5919.
Texto completo da fonteEckardt, Jan-Niklas, Waldemar Hahn, Christoph Röllig, Sebastian Stasik, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve et al. "Mimicking Clinical Trials with Synthetic Acute Myeloid Leukemia Patients Using Generative Artificial Intelligence". Blood 142, Supplement 1 (28 de novembro de 2023): 2268. http://dx.doi.org/10.1182/blood-2023-179817.
Texto completo da fonteImmorlica, Nicole, Karthik Abinav Sankararaman, Robert Schapire e Aleksandrs Slivkins. "Adversarial Bandits with Knapsacks". Journal of the ACM, 18 de agosto de 2022. http://dx.doi.org/10.1145/3557045.
Texto completo da fonteDong, Yanyan, e Vincent Y. F. Tan. "Adversarial Combinatorial Bandits with Switching Costs". IEEE Transactions on Information Theory, 2024, 1. http://dx.doi.org/10.1109/tit.2024.3384033.
Texto completo da fonteLykouris, Thodoris, Karthik Sridharan e Éva Tardos. "Small-Loss Bounds for Online Learning with Partial Information". Mathematics of Operations Research, 25 de janeiro de 2022. http://dx.doi.org/10.1287/moor.2021.1204.
Texto completo da fonteAlipour-Fanid, Amir, Monireh Dabaghchian e Kai Zeng. "Self-Unaware Adversarial Multi-Armed Bandits With Switching Costs". IEEE Transactions on Neural Networks and Learning Systems, 2021, 1–15. http://dx.doi.org/10.1109/tnnls.2021.3110194.
Texto completo da fonteZhou, Datong, e Claire Tomlin. "Budget-Constrained Multi-Armed Bandits With Multiple Plays". Proceedings of the AAAI Conference on Artificial Intelligence 32, n.º 1 (29 de abril de 2018). http://dx.doi.org/10.1609/aaai.v32i1.11629.
Texto completo da fonteLi, Yandi, Jianxiong Guo, Yupeng Li, Tian Wang e Weijia Jia. "Adversarial Bandits With Multi-User Delayed Feedback: Theory and Application". IEEE Transactions on Mobile Computing, 2024, 1–15. http://dx.doi.org/10.1109/tmc.2024.3362237.
Texto completo da fonteTossou, Aristide, e Christos Dimitrakakis. "Achieving Privacy in the Adversarial Multi-Armed Bandit". Proceedings of the AAAI Conference on Artificial Intelligence 31, n.º 1 (13 de fevereiro de 2017). http://dx.doi.org/10.1609/aaai.v31i1.10896.
Texto completo da fonteHuang, Yin, Lei Wang e Jie Xu. "Quantum Entanglement Path Selection and Qubit Allocation via Adversarial Group Neural Bandits". IEEE/ACM Transactions on Networking, 2024, 1–12. https://doi.org/10.1109/tnet.2024.3510550.
Texto completo da fonte