Literatura científica selecionada sobre o tema "Adjoint discret"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Adjoint discret".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Adjoint discret"
Zhao, Shunliu, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell et al. "A multiphase CMAQ version 5.0 adjoint". Geoscientific Model Development 13, n.º 7 (2 de julho de 2020): 2925–44. http://dx.doi.org/10.5194/gmd-13-2925-2020.
Texto completo da fonteNi, Angxiu. "Backpropagation in hyperbolic chaos via adjoint shadowing". Nonlinearity 37, n.º 3 (30 de janeiro de 2024): 035009. http://dx.doi.org/10.1088/1361-6544/ad1aed.
Texto completo da fonteCapps, S. L., D. K. Henze, A. Hakami, A. G. Russell e A. Nenes. "ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA". Atmospheric Chemistry and Physics Discussions 11, n.º 8 (19 de agosto de 2011): 23469–511. http://dx.doi.org/10.5194/acpd-11-23469-2011.
Texto completo da fonteHekmat, Mohamad Hamed, e Masoud Mirzaei. "Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method". Advances in Mechanical Engineering 6 (1 de janeiro de 2014): 230854. http://dx.doi.org/10.1155/2014/230854.
Texto completo da fonteLarour, Eric, Jean Utke, Anton Bovin, Mathieu Morlighem e Gilberto Perez. "An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11". Geoscientific Model Development 9, n.º 11 (1 de novembro de 2016): 3907–18. http://dx.doi.org/10.5194/gmd-9-3907-2016.
Texto completo da fonteWu, Hangkong, Xuanlong Da, Dingxi Wang e Xiuquan Huang. "Multi-Row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver". Aerospace 10, n.º 2 (21 de janeiro de 2023): 106. http://dx.doi.org/10.3390/aerospace10020106.
Texto completo da fonteTowara, Markus, Michel Schanen e Uwe Naumann. "MPI-Parallel Discrete Adjoint OpenFOAM". Procedia Computer Science 51 (2015): 19–28. http://dx.doi.org/10.1016/j.procs.2015.05.181.
Texto completo da fonteNiwa, Yosuke, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda et al. "A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 1: Offline forward and adjoint transport models". Geoscientific Model Development 10, n.º 3 (17 de março de 2017): 1157–74. http://dx.doi.org/10.5194/gmd-10-1157-2017.
Texto completo da fonteAgarwal, Ravi P., Safi S. Rabie e Samir H. Saker. "On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes". Fractal and Fractional 7, n.º 3 (14 de março de 2023): 261. http://dx.doi.org/10.3390/fractalfract7030261.
Texto completo da fonteCao, Junying, Zhongqing Wang e Ziqiang Wang. "A Uniform Accuracy High-Order Finite Difference and FEM for Optimal Problem Governed by Time-Fractional Diffusion Equation". Fractal and Fractional 6, n.º 9 (28 de agosto de 2022): 475. http://dx.doi.org/10.3390/fractalfract6090475.
Texto completo da fonteTeses / dissertações sobre o assunto "Adjoint discret"
Dittmann, Florian. "Study and Optimisation of Supersonic Ejectors for Heat Recovery Refrigeration Cycles". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM029.
Texto completo da fonteSupersonic ejectors for heat recovery refrigeration cycles are modelled, studied and optimised based on numerical fluid mechanics and the discrete adjoint method. The study is supported by an analysis of the relations between the complex flow phenomena, the thermodynamic limits and the cycle performance. A generalised 1D model is developed and used to conceive ejectors and predict their entrainment ratio in order to determine the optimal cycle conditions. The resolution of the Reynolds averaged Navier-Stokes equations complemented by the k-ω SST turbulence model and a cubic equation of state for the refrigerant R134a enables the flow analysis and shape optimisation. The latter relies on the discrete adjoint method to efficiently evaluate the gradient of the objective function with respect to an arbitrary number of design variables. It is shown that the method, applied here for the first time to a transonic flow of a refrigerant in an ejector, is capable of generating a well performing ejector shape from a failed design, despite the apparent discontinuity of the objective function at the critical point. The predicted efficiencies with the optimised shapes exceed those of the best ejectors on the market by around 15%
Marcelet, Meryem. "Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure". Phd thesis, Paris, ENSAM, 2008. http://tel.archives-ouvertes.fr/tel-00367508.
Texto completo da fonteMarcelet, Meryem. "Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure". Phd thesis, Paris, ENSAM, 2008. http://www.theses.fr/2008ENAM0039.
Texto completo da fonteThis work is mainly dedicated to the sensitivity analysis of a static aeroelastic system with respect to design parameters governing its jig-shape. First, a framework able to predict the static aeroelastic equilibrium has been set up. The fluid behavior can be governed either by the nonlinear Euler equations or by the Navier-Stokes Reynolds averaged (RANS) equations. They are numerically solved by an ONERA CFD solver: elsA. The structural behavior is governed by the Euler-Bernoulli equations within the context of beam theory. The aerodynamic loads are transferred to the structure using the matrix of the influence coefficients, also called the flexibility matrix. Only the bending and the twisting aerodynamic load components are consistently transmitted to the structure, and only the bending and the torsional displacements of the structure are calculated under the small displacement hypothesis. The deformation induced on the fluid domain mesh is analytically prescribed using an analogy to solid mechanics. Finally, the resulting coupled aeroelastic system of equations is solved by an iterative process inspired from the fixed-point algorithm. Second, a framework aiming at computing the gradients of the functions of interest (objective and constraints) with respect to a vector of shape parameters related to the jig-shape of the aeroelastic system previously depicted, has been raised. These gradients can be computed either by the discrete direct differentiation method or by the discrete adjoint vector method. In both cases, a coupled linear system of equations has to be solved, which is carried out using a doubly lagged iterative process. Finally, this framework has been applied to the computation of the gradients of the drag and lift aerodynamic coefficients with respect to different shape parameters for three aerodynamic configurations of growing complexity: Euler equations solved on a multiblock mesh with matching boundaries, RANS equations on a monoblock mesh, and, at last, RANS equations solved on a multiblock mesh with non-matching boundaries. The analytical gradients have been validated through the comparison with the finite difference gradients. A last part of this work has been dedicated to the evaluation of the performances of four surrogate models within the shape optimization of a bidimensional turbomachinery configuration
Mura, Gabriele Luigi. "Mesh sensitivity investigation in the discrete adjoint framework". Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17384/.
Texto completo da fonteRothauge, Kai. "The discrete adjoint method for high-order time-stepping methods". Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60285.
Texto completo da fonteScience, Faculty of
Mathematics, Department of
Graduate
Schneider, Rene. "Applications of the discrete adjoint method in computational fluid dynamics". Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/1343/.
Texto completo da fonteWalther, Andrea. "Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1214221752009-12115.
Texto completo da fonteWalther, Andrea. "Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications". Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23715.
Texto completo da fonteRoth, Rolf [Verfasser]. "Multilevel Optimization of Turbulent Flows by Discrete Adjoint Techniques / Rolf Roth". München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821424/34.
Texto completo da fonteTowara, Markus [Verfasser], Uwe [Akademischer Betreuer] Naumann e Wolfgang [Akademischer Betreuer] Schröder. "Discrete adjoint optimization with OpenFOAM / Markus Towara ; Uwe Naumann, Wolfgang Schröder". Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1187346942/34.
Texto completo da fonteLivros sobre o assunto "Adjoint discret"
Edmunds, D. E., e W. D. Evans. Capacity and Compactness Criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0008.
Texto completo da fonteCapítulos de livros sobre o assunto "Adjoint discret"
Wong, M. W. "Self-Adjoint Operators". In Discrete Fourier Analysis, 113–16. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0116-4_16.
Texto completo da fonteLotz, Johannes, Uwe Naumann, Max Sagebaum e Michel Schanen. "Discrete Adjoints of PETSc through dco/c++ and Adjoint MPI". In Euro-Par 2013 Parallel Processing, 497–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40047-6_51.
Texto completo da fonteGiles, M. B. "Discrete Adjoint Approximations with Shocks". In Hyperbolic Problems: Theory, Numerics, Applications, 185–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_16.
Texto completo da fonteCatlin, Donald E. "Adjoints, Projections, Pseudoinverses". In Estimation, Control, and the Discrete Kalman Filter, 92–113. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4528-5_4.
Texto completo da fonteSchmüdgen, Konrad. "Discrete Spectra of Self-adjoint Operators". In Graduate Texts in Mathematics, 265–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1_12.
Texto completo da fonteFichtner, Andreas. "The Frequency-Domain Discrete Adjoint Method". In Full Seismic Waveform Modelling and Inversion, 189–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_10.
Texto completo da fonteShu, Hanlin, Liangzhi Cao, Qingming He, Tao Dai, Zhangpeng Huang e Hongchun Wu. "Study on Unstructured-Mesh-Based Importance Sampling Method of Monte Carlo Simulation". In Springer Proceedings in Physics, 431–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_38.
Texto completo da fonteAnil, N., N. K. S. Rajan, Omesh Reshi e S. M. Deshpande. "A Low Dissipative Discrete Adjoint m-KFVS Method". In Computational Fluid Dynamics 2008, 619–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_82.
Texto completo da fonteTowara, Markus, Johannes Lotz e Uwe Naumann. "Discrete Adjoint Approaches for CHT Applications in OpenFOAM". In Computational Methods in Applied Sciences, 163–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57422-2_11.
Texto completo da fonteBrezillon, Joël, e Mohammad Abu-Zurayk. "Aerodynamic Inverse Design Framework Using Discrete Adjoint Method". In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 489–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35680-3_58.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Adjoint discret"
Biava, Massimo, Mark Woodgate e George N. Barakos. "Fully Implicit Discrete Adjoint Methods". In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1491.
Texto completo da fonteFrey, Christian, Hans-Peter Kersken e Dirk Nu¨rnberger. "The Discrete Adjoint of a Turbomachinery RANS Solver". In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59062.
Texto completo da fonteSchäfer, Fellcitas, Luca Magri e Wolfgang Polifke. "A Hybrid Adjoint Network Model for Thermoacoustic Optimization". In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59866.
Texto completo da fonteMartins, Joaquim R. R. A., Charles Mader e Juan Alonso. "ADjoint: An Approach for Rapid Development of Discrete Adjoint Solvers". In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7121.
Texto completo da fonteZhang, Chaolei, e Zhenping Feng. "Aerodynamic Shape Design Optimization for Turbomachinery Cascade Based on Discrete Adjoint Method". In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45805.
Texto completo da fonteMa, Can, Xinrong Su e Xin Yuan. "Discrete Adjoint Solution of Unsteady Turbulent Flow in Compressor". In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42948.
Texto completo da fonteWalther, Benjamin, e Siva Nadarajah. "An Adjoint-Based Optimization Method for Constrained Aerodynamic Shape Design of Three-Dimensional Blades in Multi-Row Turbomachinery Configurations". In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26604.
Texto completo da fonteWu, Hangkong, Shenren Xu, Xiuquan Huang e Dingxi Wang. "The Development and Verification of a Fully Turbulent Discrete Adjoint Solver Using Algorithmic Differentiation". In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59610.
Texto completo da fonteLu, Juan, Chaolei Zhang e Zhenping Feng. "Aerodynamic Optimization and Inverse Design of 2D and 3D Turbine Cascades Using the Discrete Adjoint Method". In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95284.
Texto completo da fonteChung, June, Jeonghwan Shim e Ki D. Lee. "Inverse Design of 3D Compressor Blades With Adjoint Method". In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45419.
Texto completo da fonteRelatórios de organizações sobre o assunto "Adjoint discret"
Slater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/5973682.
Texto completo da fonteSlater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), janeiro de 1992. http://dx.doi.org/10.2172/10110196.
Texto completo da fonte