Siga este link para ver outros tipos de publicações sobre o tema: Adaptive imaging system.

Artigos de revistas sobre o tema "Adaptive imaging system"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Adaptive imaging system".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Rigby, Kenneth Wayne. "Adaptive ultrasound imaging system". Journal of the Acoustical Society of America 121, n.º 5 (2007): 2495. http://dx.doi.org/10.1121/1.2739204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Larichev, A. V., P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalgauzen e L. J. Otten. "Adaptive system for eye-fundus imaging". Quantum Electronics 32, n.º 10 (31 de outubro de 2002): 902–8. http://dx.doi.org/10.1070/qe2002v032n10abeh002314.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Choi, Junoh. "Iris imaging system with adaptive optical elements". Journal of Electronic Imaging 21, n.º 1 (27 de fevereiro de 2012): 013004. http://dx.doi.org/10.1117/1.jei.21.1.013004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Griffiths, J. A., M. G. Metaxas, S. Pani, H. Schulerud, C. Esbrand, G. J. Royle, B. Price et al. "Preliminary images from an adaptive imaging system". Physica Medica 24, n.º 2 (junho de 2008): 117–21. http://dx.doi.org/10.1016/j.ejmp.2008.01.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kaltiokallio, Ossi, Riku Jantti e Neal Patwari. "ARTI: An Adaptive Radio Tomographic Imaging System". IEEE Transactions on Vehicular Technology 66, n.º 8 (agosto de 2017): 7302–16. http://dx.doi.org/10.1109/tvt.2017.2664938.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Simopoulos, Constantine, e Bhaskar Ramamurthy. "Ultrasound imaging system having motion adaptive gain". Journal of the Acoustical Society of America 128, n.º 1 (2010): 517. http://dx.doi.org/10.1121/1.3472340.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Gao Meijing, 高美静, 顾海华 Gu Haihua, 关丛荣 Guan Congrong e 吴伟龙 Wu Weilong. "Adaptive Position Calibration for Thermal Microscopic Imaging System". Acta Optica Sinica 33, n.º 1 (2013): 0111002. http://dx.doi.org/10.3788/aos201333.0111002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Wu Chuhan, 武楚晗, 张晓芳 Zhang Xiaofang, 陈蔚林 Chen Weilin e 常军 Chang Jun. "Fundus Imaging System Based on Tomographic Adaptive Optics". Acta Optica Sinica 37, n.º 4 (2017): 0411002. http://dx.doi.org/10.3788/aos201737.0411002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Smith, Stephen W., e Gregg E. Trahey. "High speed adaptive ultrasonic phased array imaging system". Journal of the Acoustical Society of America 87, n.º 6 (junho de 1990): 2806. http://dx.doi.org/10.1121/1.398978.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Bille, Josef F., Mikael Agopov, Cristina Alvarez-diez, Meng Han, Nina Korablinova, Ulrich von Pape, Olivier La Schiazza, Melanie Schwingel, Hongwei Zhang e Frank Müller. "Compact adaptive optics system for multiphoton fundus imaging". Journal of Modern Optics 55, n.º 4-5 (20 de fevereiro de 2008): 749–58. http://dx.doi.org/10.1080/09500340701608024.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Song, Min-Ho, Ji-Seong Jeong, Munkh-Uchral Erdenebat, Ki-Chul Kwon, Nam Kim e Kwan-Hee Yoo. "Integral imaging system using an adaptive lens array". Applied Optics 55, n.º 23 (8 de agosto de 2016): 6399. http://dx.doi.org/10.1364/ao.55.006399.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Shields, Eric, Wei Zhou, Yuyan Wang e James Leger. "Microelectromechanical system-based adaptive space-variant imaging microspectrometer". Applied Optics 46, n.º 31 (23 de outubro de 2007): 7631. http://dx.doi.org/10.1364/ao.46.007631.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bian, Zichao, Siyuan Dong e Guoan Zheng. "Adaptive system correction for robust Fourier ptychographic imaging". Optics Express 21, n.º 26 (20 de dezembro de 2013): 32400. http://dx.doi.org/10.1364/oe.21.032400.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Liu, Changgeng, e Myung K. Kim. "Digital adaptive optics line-scanning confocal imaging system". Journal of Biomedical Optics 20, n.º 11 (3 de julho de 2015): 111203. http://dx.doi.org/10.1117/1.jbo.20.11.111203.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Liu, Changgeng, Xiao Yu e Myung K. Kim. "Fourier transform digital holographic adaptive optics imaging system". Applied Optics 51, n.º 35 (10 de dezembro de 2012): 8449. http://dx.doi.org/10.1364/ao.51.008449.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Oliver, J. A., O. A. Zeidan, S. Meeks, A. P. Shah, J. Pukala, P. Kelly, N. R. Ramakrishna e T. Willoughby. "A Novel Imaging System for Adaptive Proton Therapy". International Journal of Radiation Oncology*Biology*Physics 99, n.º 2 (outubro de 2017): E707—E708. http://dx.doi.org/10.1016/j.ijrobp.2017.06.2304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tarlanov, A. T., e Z. M. Kurbanismailov. "Adaptive imaging system for electromagnetic scattering field of aircraft". IOP Conference Series: Materials Science and Engineering 1027 (12 de janeiro de 2021): 012027. http://dx.doi.org/10.1088/1757-899x/1027/1/012027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Tao, Xiaodong, Deokhwa Hong e Hyungsuck Cho. "An adaptive depth of field imaging system for micromanipulation". IFAC Proceedings Volumes 41, n.º 2 (2008): 14743–48. http://dx.doi.org/10.3182/20080706-5-kr-1001.02496.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Li, Hongliang, Ke Lu, Jian Xue, Feng Dai e Yongdong Zhang. "Dual Optical Path Based Adaptive Compressive Sensing Imaging System". Sensors 21, n.º 18 (16 de setembro de 2021): 6200. http://dx.doi.org/10.3390/s21186200.

Texto completo da fonte
Resumo:
Compressive Sensing (CS) has proved to be an effective theory in the field of image acquisition. However, in order to distinguish the difference between the measurement matrices, the CS imaging system needs to have a higher signal sampling accuracy. At the same time, affected by the noise of the light path and the circuit, the measurements finally obtained are noisy, which directly affects the imaging quality. We propose a dual-optical imaging system that uses the bidirectional reflection characteristics of digital micromirror devices (DMD) to simultaneously acquire CS measurements and images under the same viewing angle. Since deep neural networks have powerful modeling capabilities, we trained the filter network and the reconstruction network separately. The filter network is used to filter the noise in the measurements, and the reconstruction network is used to reconstruct the CS image. Experiments have proved that the method we proposed can filter the noise in the sampling process of the CS system, and can significantly improve the quality of image reconstruction under a variety of algorithms.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Zhang, Jie, Qiang Yang, Kenichi Saito, Koji Nozato, David R. Williams e Ethan A. Rossi. "An adaptive optics imaging system designed for clinical use". Biomedical Optics Express 6, n.º 6 (18 de maio de 2015): 2120. http://dx.doi.org/10.1364/boe.6.002120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Meadway, Alexander, Christopher A. Girkin e Yuhua Zhang. "A dual-modal retinal imaging system with adaptive optics". Optics Express 21, n.º 24 (25 de novembro de 2013): 29792. http://dx.doi.org/10.1364/oe.21.029792.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ustuner, Kutay, e Anming He. "Ultrasonic imaging system and method with SNR adaptive processing". Journal of the Acoustical Society of America 113, n.º 2 (2003): 696. http://dx.doi.org/10.1121/1.1560306.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Niu, Saisai, Jianxin Shen, Chun Liang, Yunhai Zhang e Bangming Li. "High-resolution retinal imaging with micro adaptive optics system". Applied Optics 50, n.º 22 (27 de julho de 2011): 4365. http://dx.doi.org/10.1364/ao.50.004365.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Rozler, Mike, e Wei Chang. "Collimator Interchange System for Adaptive Cardiac Imaging in C-SPECT". IEEE Transactions on Nuclear Science 58, n.º 5 (outubro de 2011): 2226–33. http://dx.doi.org/10.1109/tns.2011.2163190.

Texto completo da fonte
Resumo:
Compared to imaging the heart with conventional cameras, dedicated cardiac SPECT systems can achieve much higher performance through use of a small field of view. To realize this potential, however, the heart must be reliably placed in the appropriate small FOV prior to imaging, thus requiring a separate scout operation to locate the heart and estimate its size. Furthermore, to achieve high performance across the general population, a system should provide several imaging configurations optimized for different size and location of the heart and the size of the patient. Because of the critical role the collimator plays in SPECT, it would be ideal if a dedicated collimator could be used for each of the different patient groups, as well as for the scout imaging. The ability to exchange collimators without moving the patient can also enable serial studies with different imaging options while preserving anatomic registration.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Al-Nabulsi, Jamal I., e Bashar E. A. Badr. "Adaptive gender-based thermal control system". International Journal of Electrical and Computer Engineering (IJECE) 11, n.º 2 (1 de abril de 2021): 1200. http://dx.doi.org/10.11591/ijece.v11i2.pp1200-1207.

Texto completo da fonte
Resumo:
A closed loop adaptive gender-based thermal control system (AG-TCS) is designed, modelled, analysed and tested. The system has the unique feature of adapting to the surrounding environment as a function of the number of humans present and the gender ratio. The operation of the system depends on a unique interface between a radio frequency identification (RFID) device and an imaging device, both of which are correlated and interfaced to a controller. Testing of the system resulted in smooth transition and shape conversion of the response curve, which proved its adaptability. Three mathematical equations describing the internal mechanisms of the AG-TCS are presented and have been proven to optimally reflect the original statistical data covering both genders.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Liu Ying, 刘颖, 杨亚良 Yang Yaliang e 岳献 Yue Xian. "Laser Exposure Safety Analysis for Adaptive Optics Retinal Imaging System". Acta Optica Sinica 40, n.º 10 (2020): 1014003. http://dx.doi.org/10.3788/aos202040.1014003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Shen Mande, 沈满德. "High-resolution midwave infrared temperature-adaptive night-vision imaging system". High Power Laser and Particle Beams 25, n.º 5 (2013): 1144–46. http://dx.doi.org/10.3788/hplpb20132505.1144.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Hong, Deokhwa, Ferrokh Janabi-Sharifi e Hyungsuck Cho. "An Adaptive Depth of Field Imaging System for Visual Servoing". IFAC Proceedings Volumes 41, n.º 2 (2008): 5405–10. http://dx.doi.org/10.3182/20080706-5-kr-1001.00911.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wu Tong, Ji Xiao-Ling e Luo Yu-Juan. "Characteristic parameters of adaptive optical imaging system in oceanic turbulence". Acta Physica Sinica 67, n.º 5 (2018): 054206. http://dx.doi.org/10.7498/aps.67.20171851.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

ZHENG Xian-liang, 郑贤良, 刘瑞雪 LIU Rui-xue, 夏明亮 XIA Ming-liang, 曹召良 CAO Zhao-liang e 宣丽 XUAN Li. "Retinal correction imaging system based on liquid crystal adaptive optics". Chinese Journal of Optics and Applied Optics 7, n.º 1 (2014): 98–104. http://dx.doi.org/10.3788/co.20140701.0098.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Baba, Naoshi, Susumu Kuwamura, Noriaki Miura e Yuji Norimoto. "Toward high-resolution imaging with a simple adaptive-optics system". Optics Letters 21, n.º 9 (1 de maio de 1996): 626. http://dx.doi.org/10.1364/ol.21.000626.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kardjilov, N., M. Dawson, A. Hilger, I. Manke, M. Strobl, D. Penumadu, F. H. Kim, F. Garcia-Moreno e J. Banhart. "A highly adaptive detector system for high resolution neutron imaging". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 651, n.º 1 (setembro de 2011): 95–99. http://dx.doi.org/10.1016/j.nima.2011.02.084.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Jiang, Pengzhi, Yonghui Liang, Jieping Xu e Hongjun Mao. "A new performance metric on sensorless adaptive optics imaging system". Optik 127, n.º 1 (janeiro de 2016): 222–26. http://dx.doi.org/10.1016/j.ijleo.2015.10.051.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Chauvin, G., A. M. Lagrange, H. Beust, T. Fusco, D. Mouillet, F. Lacombe, P. Pujet et al. "VLT/NACO adaptive optics imaging of the TY CrA system". Astronomy & Astrophysics 406, n.º 3 (agosto de 2003): L51—L54. http://dx.doi.org/10.1051/0004-6361:20030554.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Liu, D.-L. Donald. "Time-delay compensation system and methods for adaptive ultrasound imaging". Journal of the Acoustical Society of America 112, n.º 4 (2002): 1248. http://dx.doi.org/10.1121/1.1520984.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Sim, K. S., V. Teh e M. E. Nia. "Adaptive noise Wiener filter for scanning electron microscope imaging system". Scanning 38, n.º 2 (31 de julho de 2015): 148–63. http://dx.doi.org/10.1002/sca.21250.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Hutchings, J. B. "CFHT Adaptive Optics Imaging of Active Galaxies". Symposium - International Astronomical Union 186 (1999): 345–47. http://dx.doi.org/10.1017/s007418090011294x.

Texto completo da fonte
Resumo:
The CFHT adaptive optics camera uses a visible light guide signal from a star to operate a bimorph mirror. The system is a unit that is operated by the observer and can be used with CCD or HgCdTe detectors. Pixel sizes are of order 0.04″. The amount of correction varies as the guide star brightness, the angular distance from it, and the natural seeing at the time. With good CFHT conditions, a guide star of 13 mag will give JHK images of FWHM near to the diffraction limit (0.1 to 0.15″) up to 20″ away. Correction is worse in the optical, but images of 0.2″ or better can be obtained in R and I-band. The camera performance is described by Rigaut et al (1998).
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Brigantic, Robert T., Michael C. Roggemann, Byron M. Welsh e Kenneth W. Bauer. "Optimization of adaptive-optics systems closed-loop bandwidth settings to maximize imaging-system performance". Applied Optics 37, n.º 5 (10 de fevereiro de 1998): 848. http://dx.doi.org/10.1364/ao.37.000848.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bai, Er-Wei, James R. Bennett, Robert McCabe, Melhem J. Sharafuddin, Henri Bai, John Halloran, Michael Vannier, Ying Liu, Chenglin Wang e Ge Wang. "Study of an adaptive bolus chasing CT angiography". Journal of X-Ray Science and Technology: Clinical Applications of Diagnosis and Therapeutics 14, n.º 1 (janeiro de 2006): 27–38. http://dx.doi.org/10.3233/xst-2006-00147.

Texto completo da fonte
Resumo:
To improve imaging quality and to reduce contrast dose and radiation exposure, an adaptive bolus chasing CT angiography was proposed so that the bolus peak position and the imaging aperture can be synchronized. The performance of the proposed adaptive bolus chasing CT angiography was experimentally evaluated based on the actual bolus dynamics. The experimental results show that the controlled table position and the bolus peak position were highly consistent. The results clearly demonstrate that the proposed adaptive bolus chasing CT angiography that synchronizes the bolus peak position with the imaging aperture by a simple adaptive system is computationally and clinically feasible. Similar techniques may also be applied to conventional angiography to improve imaging quality and to reduce contrast dose and/or radiation exposure.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Wang, Zijiao, Yufeng Gao, Xiusheng Duan e Jingya Cao. "Adaptive High-Resolution Imaging Method Based on Compressive Sensing". Sensors 22, n.º 22 (16 de novembro de 2022): 8848. http://dx.doi.org/10.3390/s22228848.

Texto completo da fonte
Resumo:
Compressive sensing (CS) is a signal sampling theory that originated about 16 years ago. It replaces expensive and complex receiving devices with well-designed signal recovery algorithms, thus simplifying the imaging system. Based on the application of CS theory, a single-pixel camera with an array-detection imaging system is established for high-pixel detection. Each detector of the detector array is coupled with a bundle of fibers formed by fusion of four bundles of fibers of different lengths, so that the target area corresponding to one detector is split into four groups of target information arriving at different times. By comparing the total amount of information received by the detector with the threshold set in advance, it can be determined whether the four groups of information are calculated separately. The simulation results show that this new system can not only reduce the number of measurements required to reconstruct high quality images but can also handle situations wherever the target may appear in the field of view without necessitating an increase in the number of detectors.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Zhou Hong, 周虹, 官春林 Guan Chunlin e 戴云 Dai Yun. "Bimorph Deformable Mirrors for Adaptive Optics of Human Retinal Imaging System". Acta Optica Sinica 33, n.º 2 (2013): 0211001. http://dx.doi.org/10.3788/aos201333.0211001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Shun Li, 李顺, 王地 Di Wang e 陆彦婷 Yanting Lu. "Method for Improving Imaging Resolution of Digital Holographic Adaptive Optical System". Chinese Journal of Lasers 46, n.º 7 (2019): 0709001. http://dx.doi.org/10.3788/cjl201946.0709001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Bedggood, Phillip, e Andrew Metha. "System design considerations to improve isoplanatism for adaptive optics retinal imaging". Journal of the Optical Society of America A 27, n.º 11 (20 de julho de 2010): A37. http://dx.doi.org/10.1364/josaa.27.000a37.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Zhang, Jie, Qiang Yang, Kenichi Saito, Koji Nozato, Austin Roorda, David R. Williams e Ethan A. Rossi. "An adaptive optics imaging system designed for clinical use: publisher’s note". Biomedical Optics Express 6, n.º 8 (10 de julho de 2015): 2864. http://dx.doi.org/10.1364/boe.6.002864.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Gao, Bin, Peng Lu, Wai Lok Woo, Gui Yun Tian, Yuyu Zhu e Martin Johnston. "Variational Bayesian Subgroup Adaptive Sparse Component Extraction for Diagnostic Imaging System". IEEE Transactions on Industrial Electronics 65, n.º 10 (outubro de 2018): 8142–52. http://dx.doi.org/10.1109/tie.2018.2801809.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Zhou, Jian, e Jinyi Qi. "Adaptive Imaging for Lesion Detection Using a Zoom-in PET System". IEEE Transactions on Medical Imaging 30, n.º 1 (janeiro de 2011): 119–30. http://dx.doi.org/10.1109/tmi.2010.2064173.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pye, S. D., S. R. Wild e W. N. McDicken. "Clinical trial of a new adaptive TGC system for ultrasound imaging". British Journal of Radiology 61, n.º 726 (junho de 1988): 523–26. http://dx.doi.org/10.1259/0007-1285-61-726-523.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Simopoulos, Constantine. "Medical ultrasonic imaging system with adaptive multi-dimensional back-end mapping". Journal of the Acoustical Society of America 112, n.º 6 (2002): 2526. http://dx.doi.org/10.1121/1.1536541.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

GOCHO - NAKASHIMA, K., N. MASSAMBA, O. ROCHE, V. PARIER, JF LE GARGASSON, B. LAMORY, N. CHATEAU, G. SOUBRANE e JL DUFIER. "Cone mosaic imaging using an adaptive optics flood illumination camera system". Acta Ophthalmologica 86 (4 de setembro de 2008): 0. http://dx.doi.org/10.1111/j.1755-3768.2008.5234.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Hai-ming, WANG, QUAN Jia-ning e GE Bao-zhen. "Research on an adaptive optics system suitable for near-ground imaging". Chinese Optics 16 (2023): 1–10. http://dx.doi.org/10.37188/co.2022-0230.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia