Literatura científica selecionada sobre o tema "Actuated tangible interaction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Actuated tangible interaction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Actuated tangible interaction"
Smiley, Jim, Benjamin Lee, Siddhant Tandon, Maxime Cordeil, Lonni Besançon, Jarrod Knibbe, Bernhard Jenny e Tim Dwyer. "The MADE-Axis". Proceedings of the ACM on Human-Computer Interaction 5, ISS (3 de novembro de 2021): 1–23. http://dx.doi.org/10.1145/3488546.
Texto completo da fonteVonach, Emanuel, Christoph Schindler e Hannes Kaufmann. "StARboard & TrACTOr: Actuated Tangibles in an Educational TAR Application". Multimodal Technologies and Interaction 5, n.º 2 (9 de fevereiro de 2021): 6. http://dx.doi.org/10.3390/mti5020006.
Texto completo da fonteOverholt, Dan, Edgar Berdahl e Robert Hamilton. "Advancements in Actuated Musical Instruments". Organised Sound 16, n.º 2 (28 de junho de 2011): 154–65. http://dx.doi.org/10.1017/s1355771811000100.
Texto completo da fonteGonzalez, Jesse T., e Scott E. Hudson. "Layer by Layer, Patterned Valves Enable Programmable Soft Surfaces". Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, n.º 1 (29 de março de 2022): 1–25. http://dx.doi.org/10.1145/3517251.
Texto completo da fonteHa, Minhyeok, Jihun Lee, Yongbeom Cho, Minwoo Lee, Hyunwoo Baek, Jungmin Lee, Jongmin Seo et al. "A Hybrid Upper‐Arm‐Geared Exoskeleton with Anatomical Digital Twin for Tangible Metaverse Feedback and Communication". Advanced Materials Technologies, 7 de dezembro de 2023. http://dx.doi.org/10.1002/admt.202301404.
Texto completo da fonteTeses / dissertações sobre o assunto "Actuated tangible interaction"
Le, Goc Mathieu. "Supporting Versatility in Tangible User Interfaces Using Collections of Small Actuated Objects". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS563/document.
Texto completo da fonteIn this dissertation, I present my work aiming at making tangible user interfaces more versatile with a higher degree of physicality, in order to bridge the gap between digital and physical worlds. To this end, I study and design systems which support interaction with digital information while better leveraging human hand capabilities. I start with an examination of the current related work, and highlight the need for further research towards more versatility with a higher degree of physicality. I argue that the specificity of existing systems tends to impair their usability and diffusion and induce a dependence on screens and other projections as media to represent the digital world. Building on lessons learned from previous work, I choose to focus my work on physical systems made of collections of generic and interactive objects. I articulate my research in four steps. Firstly, I present a study that compares tangible and multitouch interfaces to help assess potential benefits of physical objects. At the same time, I investigate the influence of object thickness on how users manipulate objects. Results suggest that conclusions from numerous previous studies need to be tempered, in particular regarding the advantages of physicality in terms of performance. These results however confirm that physicality improves user experience, due to the higher diversity of possible manipulations. As a second step, I present SmartTokens, a system based on small objects capable of detecting and recognizing user manipulations. I illustrate SmartTokens in a notification and personal task management scenario. In a third step, I introduce Swarm User Interfaces as a subclass of tangible user interfaces that are composed of collections of many interactive autonomous robots. To illustrate them, I present Zooids, an open-source open-hardware platform for developing tabletop Swarm User Interfaces. I demonstrate their potential and versatility through a set of application scenarios. I then describe their implementation, and clarify design considerations for Swarm User Interfaces. As a fourth step, I define composite data physicalizations and implement them using Zooids. I finally draw conclusions from the presented work, and open perspectives and directions for future work
Riedenklau, Eckard [Verfasser]. "Development of actuated Tangible User Interfaces: new interaction concepts and evaluation methods / Eckard Riedenklau". Bielefeld : Universitätsbibliothek Bielefeld, 2016. http://d-nb.info/1082845000/34.
Texto completo da fonteMarlier, Maudeline. "Interactions tangibles pour l’exploitation ferroviaire dans les centres opérationnels". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0025.
Texto completo da fonteThis thesis explores how Tangible User Interfaces (TUIs) and actuated tangible objects can address collaboration and decision-making challenges in railway control centres. While railway control centres are increasingly incorporating digital tools, particularly with the expanding train traffic worldwide, the role of humans remains essential, especially during crises, when operators need to collaborate to make critical decisions. To tackle these challenges, this research begins with an analysis of railway control centres and the potential of TUIs to transform interactions by offering physical forms for digital information. From this analysis, I developed a tabletop prototype that demonstrated how tangible interactions can improve operators’ understanding of rail traffic scenarios and decision outcomes. I extended this concept by designing a second prototype. This new iteration introduced actuated tangible interactions to address more complex challenges, particularly enhancing collaboration and efficiency during crisis situations. Together, these prototypes explore the evolving potential of TUIs to transform railway control operations. Then, I investigates actuated tangible feedback in remote collaboration. I conducted two user studies: the first assessed the detectability of actuated tangible objects compared to visual-only feedback during a cognitively demanding task, showing that tangibles were significantly more noticeable. The second study focused on collaborative problem-solving, testing if tangible feedback allowed users to perceive their partner’s actions and location without requiring focused attention. Qualitative findings suggest that tangibles can offer a more embodied and effective approach to maintaining awareness in remote collaborative environments. Overall, this work highlights the value of TUIs and actuated interfaces to share information, help operators visualise, compare, and resolve incidents collaboratively while understanding the consequences of decisions
Livros sobre o assunto "Actuated tangible interaction"
Mi, Haipeng. Actuated Tangible User Interface: An Extensible Method for Tabletop Interaction. LAP LAMBERT Academic Publishing, 2014.
Encontre o texto completo da fonteTrabalhos de conferências sobre o assunto "Actuated tangible interaction"
Cordeil, Maxime, Benjamin Bach, Andrew Cunningham, Bastian Montoya, Ross T. Smith, Bruce H. Thomas e Tim Dwyer. "Embodied Axes: Tangible, Actuated Interaction for 3D Augmented Reality Data Spaces". In CHI '20: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3313831.3376613.
Texto completo da fonteOtaran, Ata, Yu Jiang e Jürgen Steimle. "Sparsely actuated modular metamaterials for shape changing interfaces". In TEI '25: Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–12. New York, NY, USA: ACM, 2025. https://doi.org/10.1145/3689050.3704942.
Texto completo da fonteRiedenklau, Eckard, Thomas Hermann e Helge Ritter. "An integrated multi-modal actuated tangible user interface for distributed collaborative planning". In TEI'12: Sixth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2012. http://dx.doi.org/10.1145/2148131.2148167.
Texto completo da fonteLalioti, Vali, Ken Nakagaki, Ramarko Bhattacharya e Yasuaki Kakehi. "[e]Motion: Designing Expressive Movement in Robots and Actuated Tangible User Interfaces". In TEI '24: Eighteenth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3623509.3634741.
Texto completo da fonteWang, Yuhan, Keru Wang, Zhu Wang e Ken Perlin. "Robotecture: A Modular Shape-changing Interface Using Actuated Support Beams". In TEI '25: Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–11. New York, NY, USA: ACM, 2025. https://doi.org/10.1145/3689050.3704925.
Texto completo da fonteDaniel, Maxime, Guillaume Rivière e Nadine Couture. "Designing an Expandable Illuminated Ring to Build an Actuated Ring Chart". In TEI '18: Twelfth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3173225.3173294.
Texto completo da fonteZhang, Lina, Yibin Huai, Zhian Hu, Jiayi Wu, Alvaro Cassinelli e Kening Zhu. "ThreadTessel: A Modularized Tangible Toolkit Leveraging Origami Tessellation for Designing Thread-actuated Shape-changing Structures". In TEI '25: Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–15. New York, NY, USA: ACM, 2025. https://doi.org/10.1145/3689050.3704929.
Texto completo da fonteMarlier, Maudeline, Nicolas Renoir, Martin Hachet e Arnaud Prouzeau. "Exploring Interactions with Tangible and Actuated Tokens on a Shared Tabletop for Railway Traffic Management Control Centres". In TEI '25: Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–12. New York, NY, USA: ACM, 2025. https://doi.org/10.1145/3689050.3704938.
Texto completo da fonteMansutti, Alessandro, Mario Covarrubias Rodriguez, Monica Bordegoni e Umberto Cugini. "Tactile Display for Virtual Shape Rendering Based on Servo Actuated Modules". In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47212.
Texto completo da fonteNiiyama, Ryuma, Xu Sun, Lining Yao, Hiroshi Ishii, Daniela Rus e Sangbae Kim. "Sticky Actuator". In TEI '15: Ninth International Conference on Tangible, Embedded, and Embodied Interaction. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2677199.2680600.
Texto completo da fonte