Artigos de revistas sobre o tema "Active structures"

Siga este link para ver outros tipos de publicações sobre o tema: Active structures.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Active structures".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Soong, T. T., e G. D. Manolis. "Active Structures". Journal of Structural Engineering 113, n.º 11 (novembro de 1987): 2290–302. http://dx.doi.org/10.1061/(asce)0733-9445(1987)113:11(2290).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Pantelides, C. P., e S. R. Tzan. "Active structures with uncertainties". International Journal of Computer Applications in Technology 13, n.º 1/2 (2000): 59. http://dx.doi.org/10.1504/ijcat.2000.000224.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

D'Isep, F., e L. Sertorio. "Irreversibility for active structures". Il Nuovo Cimento B 94, n.º 2 (agosto de 1986): 168–74. http://dx.doi.org/10.1007/bf02759755.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Soong, T. T., e B. F. Spencer. "Active, semi-active and hybrid control of structures". Bulletin of the New Zealand Society for Earthquake Engineering 33, n.º 3 (30 de setembro de 2000): 387–402. http://dx.doi.org/10.5459/bnzsee.33.3.387-402.

Texto completo da fonte
Resumo:
In recent years, considerable attention has been paid to research and development of passive and active structural control devices, with particular emphasis on alleviation of wind and seismic response of buildings and bridges. In both areas, serious efforts have been undertaken to develop the structural control concept into a workable technology, and today we have many such devices installed in a wide variety of structures. The focus of this state-of-the-art paper is on active, semi-active and hybrid structural control with seismic applications. These systems employ controllable force devices integrated with sensors, controllers and real-time information processing. This paper includes a brief historical outline of their development and an assessment of the state-of-the-art and state-of-the-practice of this exciting, and still evolving, technology. Also included in the discussion are their advantages and limitations in the context of seismic design and retrofit of civil engineering structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Qureshi, Sohail M., Hajime Tsutsumi, Kiyoshi Uno e Shoichi Kitagawa. "ACTIVE CONTROL OF SLIDING STRUCTURES". PROCEEDINGS OF THE JSCE EARTHQUAKE ENGINEERING SYMPOSIUM 21 (1991): 493–96. http://dx.doi.org/10.2208/proee1957.21.493.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Chang, C. M., B. M. Al-Hashimi e J. N. Ross. "Unified active filter biquad structures". IEE Proceedings - Circuits, Devices and Systems 151, n.º 4 (2004): 273. http://dx.doi.org/10.1049/ip-cds:20040132.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Pearl, Laurence. "Similarity of active-site structures". Nature 362, n.º 6415 (março de 1993): 24. http://dx.doi.org/10.1038/362024a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Nathal, Michael V., e George L. Stefko. "Smart Materials and Active Structures". Journal of Aerospace Engineering 26, n.º 2 (abril de 2013): 491–99. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000319.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Sirlin, S., C. Paliou, R. W. Longman, M. Shinozuka e E. Samaras. "Active Control of Floating Structures". Journal of Engineering Mechanics 112, n.º 9 (setembro de 1986): 947–65. http://dx.doi.org/10.1061/(asce)0733-9399(1986)112:9(947).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Reinhorn, A. M., G. D. Manolis e C. Y. Wen. "Active Control of Inelastic Structures". Journal of Engineering Mechanics 113, n.º 3 (março de 1987): 315–33. http://dx.doi.org/10.1061/(asce)0733-9399(1987)113:3(315).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Firczuk, Małgorzata, Artur Mucha e Matthias Bochtler. "Crystal Structures of Active LytM". Journal of Molecular Biology 354, n.º 3 (dezembro de 2005): 578–90. http://dx.doi.org/10.1016/j.jmb.2005.09.082.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Barsoum, Roshdy George S. "Active materials and adaptive structures". Smart Materials and Structures 6, n.º 1 (1 de fevereiro de 1997): 117–22. http://dx.doi.org/10.1088/0964-1726/6/1/014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Baz, A. "Active Control of Periodic Structures". Journal of Vibration and Acoustics 123, n.º 4 (1 de junho de 2001): 472–79. http://dx.doi.org/10.1115/1.1399052.

Texto completo da fonte
Resumo:
Conventional passive periodic structures exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic structures only within specific frequency bands called the “Pass Bands” and wave propagation is completely blocked within other frequency bands called the “Stop Bands.” In this paper, the emphasis is placed on providing the passive structures with active control capabilities in order to tune the spectral width and location of the pass and stop bands in response to the structural vibration. Apart from their unique filtering characteristics, the ability of periodic structures to transmit waves, from one location to another, within the pass bands can be greatly reduced when the ideal periodicity is disrupted resulting in the well-known phenomenon of “Localization.” In the case of passive structures, the aperiodicity (or the disorder) can result from unintentional material, geometric and manufacturing variability. However, in the case of active periodic structures the aperiodicity is intentionally introduced by proper tuning of the controllers of the individual substructure or cell. The theory governing the operation of this class of Active Periodic structures is introduced and numerical examples are presented to illustrate their tunable filtering and localization characteristics. The examples considered include periodic/aperiodic spring-mass systems controlled by piezoelectric actuators. The presented results emphasize the unique potential of the active periodic structures in controlling the wave propagation both in the spectral and spatial domains in an attempt to stop/confine the propagation of undesirable disturbances.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Fisco, N. R., e H. Adeli. "Smart structures: Part I—Active and semi-active control". Scientia Iranica 18, n.º 3 (junho de 2011): 275–84. http://dx.doi.org/10.1016/j.scient.2011.05.034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Melville, Stephen, Cecilie Brandt-Olsen e John Harding. "Calibrated modelling of form-active structures". IABSE Symposium Report 108, n.º 1 (19 de abril de 2017): 155–56. http://dx.doi.org/10.2749/222137817821232432.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Trudeau, Charles, Martin Bolduc, Patrick Beaupré, Patrice Topart, Christine Alain e Sylvain Cloutier. "Inkjet-Printed Flexible Active Multilayered Structures". MRS Advances 2, n.º 18 (2017): 1015–20. http://dx.doi.org/10.1557/adv.2017.237.

Texto completo da fonte
Resumo:
ABSTRACTActive inkjet materials are invoked in the fabrication of optoelectronic devices. These types of multilayer assemblies contain a variety of commercially available ink formulations. It is envisioned that a dielectric SU-8 material can be used in a FET-like structure to form an interlayer between conductive silver and semi-conductive MWCNT-doped PEDOT:PSS ink layers. These printed structures may be fabricated onto a polyimide based flexible substrate, for instance. These structures are a starting point for offering valuable information on layer-on-layer printing interactions and interface problematics within a complete inkjet device fabrication.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Al Sabouni-Zawadzka, A. "Active Control Of Smart Tensegrity Structures". Archives of Civil Engineering 60, n.º 4 (1 de dezembro de 2014): 517–34. http://dx.doi.org/10.2478/ace-2014-0034.

Texto completo da fonte
Resumo:
AbstractThe topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge.The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Dudovich, N., G. Levy-Yurista, A. Sharon, A. A. Friesem e H. G. Weber. "Active semiconductor-based grating waveguide structures". IEEE Journal of Quantum Electronics 37, n.º 8 (2001): 1030–39. http://dx.doi.org/10.1109/3.937392.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Cha, J. Z., J. M. Pitarresi e T. T. Soong. "Optimal Design Procedures for Active Structures". Journal of Structural Engineering 114, n.º 12 (dezembro de 1988): 2710–23. http://dx.doi.org/10.1061/(asce)0733-9445(1988)114:12(2710).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

HAN, SANG-JUN, PANOS TSOPELAS e A. BAZ. "ACTIVE/PASSIVE SEISMIC CONTROL OF STRUCTURES". Journal of Earthquake Engineering 10, n.º 4 (julho de 2006): 509–26. http://dx.doi.org/10.1080/13632460609350607.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Follador, M., A. T. Conn, B. Mazzolai e J. Rossiter. "Active-elastic bistable minimum energy structures". Applied Physics Letters 105, n.º 14 (6 de outubro de 2014): 141903. http://dx.doi.org/10.1063/1.4898142.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Jiang, Nina, Xiaolu Zhuo e Jianfang Wang. "Active Plasmonics: Principles, Structures, and Applications". Chemical Reviews 118, n.º 6 (29 de setembro de 2017): 3054–99. http://dx.doi.org/10.1021/acs.chemrev.7b00252.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Stemberk, J., B. Kostak e V. Vilimek. "3D monitoring of active tectonic structures". Journal of Geodynamics 36, n.º 1-2 (agosto de 2003): 103–12. http://dx.doi.org/10.1016/s0264-3707(03)00042-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Pantelides, Chris P. "Active control of wind-excited structures". Journal of Wind Engineering and Industrial Aerodynamics 36 (janeiro de 1990): 189–202. http://dx.doi.org/10.1016/0167-6105(90)90304-u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Porta, Josep M., e Sergi Hernández-Juan. "Path planning for active tensegrity structures". International Journal of Solids and Structures 78-79 (janeiro de 2016): 47–56. http://dx.doi.org/10.1016/j.ijsolstr.2015.09.018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Keller, Christoph U. "Small-Scale Structures in Active Regions". International Astronomical Union Colloquium 141 (1993): 3–10. http://dx.doi.org/10.1017/s0252921100028670.

Texto completo da fonte
Resumo:
AbstractWithin the last few years significant progress has been made in our understanding of the small-scale structures in active regions. Here I present some of the newest findings obtained by using speckle interferometric techniques. There exist continuum bright points with a contrast of about 30% that are cospatial with strong magnetic fields. The observations are consistent with the assumption that some facular and network bright points are the white-light signature of magnetic fluxtubes with a diameter of about 200 km. Magnetic elements larger than about 300 km are mainly darker than the average quiet sun. Their properties are similar to what has been called magnetic knots or invisible sunspots. In highly magnetic areas there is no clear relationship between continuum intensity and magnetogram signal at the smallest spatial scales. The magnetic field of pores extends beyond the dark umbra. There radially elongated structures may appear that are similar to penumbral filaments in sunspots.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Asano, Koichiro, e Hajime Nakagawa. "Active Saturation Control of Hysteretic Structures". Computer-Aided Civil and Infrastructure Engineering 13, n.º 6 (novembro de 1998): 425–32. http://dx.doi.org/10.1111/0885-9507.00120.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Inman, Danieal J. "Active modal control for smart structures". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, n.º 1778 (15 de janeiro de 2001): 205–19. http://dx.doi.org/10.1098/rsta.2000.0721.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Araújo, A. L., H. M. R. Lopes, M. A. P. Vaz, C. M. Mota Soares, J. Herskovits e P. Pedersen. "Parameter estimation in active plate structures". Computers & Structures 84, n.º 22-23 (setembro de 2006): 1471–79. http://dx.doi.org/10.1016/j.compstruc.2006.01.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Gluck, J., Y. Ribakov e A. N. Dancygier. "Predictive active control of MDOF structures". Earthquake Engineering & Structural Dynamics 29, n.º 1 (janeiro de 2000): 109–25. http://dx.doi.org/10.1002/(sici)1096-9845(200001)29:1<109::aid-eqe898>3.0.co;2-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

WATANABE, Shuya, e Jun SHINTAKE. "Active tensegrity structures using electrostatic actuators". Proceedings of the Dynamics & Design Conference 2022 (2022): 501. http://dx.doi.org/10.1299/jsmedmc.2022.501.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

SINGH, M. P., E. E. MATHEU e L. E. SUAREZ. "ACTIVE AND SEMI-ACTIVE CONTROL OF STRUCTURES UNDER SEISMIC EXCITATION". Earthquake Engineering & Structural Dynamics 26, n.º 2 (fevereiro de 1997): 193–213. http://dx.doi.org/10.1002/(sici)1096-9845(199702)26:2<193::aid-eqe634>3.0.co;2-#.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Takezawa, Akihiro, Kanjuro Makihara, Nozomu Kogiso e Mitsuru Kitamura. "CO-JP-1 Ground structure approach for PZT layout optimization in semi-active vibration control systems of space structures". Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _CO—JP—1–1—_CO—JP—1–1. http://dx.doi.org/10.1299/jsmemecj.2012._co-jp-1-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Itoh, T., T. Shimomura e H. Okubo. "2B15 Semi-active Vibration Control of Smart Structures with Sliding Mode Control". Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2B15–1_—_2B15–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2b15-1_.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Mohan, P. V. A. "Generation of OTA-C filter structures from active RC filter structures". IEEE Transactions on Circuits and Systems 37, n.º 5 (maio de 1990): 656–60. http://dx.doi.org/10.1109/31.55014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Kwak, Moon K., Dong-Ho Yang e Ji-Hwan Shin. "Active vibration control of structures using a semi-active dynamic absorber". Noise Control Engineering Journal 63, n.º 3 (1 de maio de 2015): 287–99. http://dx.doi.org/10.3397/1/376326.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Wang, Yafeng, Xian Xu e Yaozhi Luo. "Minimal mass design of active tensegrity structures". Engineering Structures 234 (maio de 2021): 111965. http://dx.doi.org/10.1016/j.engstruct.2021.111965.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Lee, Hamilton, e Jacqueline Williams. "In Defense of All-Active Manager Structures". Journal of Investing 25, n.º 4 (30 de novembro de 2016): 7–19. http://dx.doi.org/10.3905/joi.2016.25.4.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

BABA, Shunsuke, Kohki NINOMIYA e Tateo KAJITA. "Digital active optimal control of steel structures." Doboku Gakkai Ronbunshu, n.º 380 (1987): 375–81. http://dx.doi.org/10.2208/jscej.1987.380_375.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Rai, Gopal L. "Advanced Active Prestressed CFRP in RCC Structures". Advanced Materials Research 1129 (novembro de 2015): 290–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1129.290.

Texto completo da fonte
Resumo:
. The need for rehabilitation of reinforced concrete structures is rapidly increasing. Fibre reinforced polymer (FRP) composite materials for concrete structures have high strength-to-weight ratios that can provide high prestressing forces while adding minimal additional weight to a structure. They also have good fatigue properties and exhibit low relaxation losses, both of which can increase the service lives and the load carrying capacities of reinforced concrete structures. Carbon fiber reinforced polymer (CFRP) composite system is integrated system based on carbon fibres and epoxy resins. By prestressing the CFRP laminates, the material is used more efficiently as a part of its tensile capacity is utilised and it contributes to the load bearing capacity under both service and ultimate load condition. This is an ideal technique as it combines the advantage of using noncorrosive and lightweight advanced composite material in the form of FRP laminates with high efficiency offered by external prestressing. An innovative mechanical anchorage system was developed to prestress the FRP laminates directly by jacking and reacting against the RCC structure.This paper describes the use of Prestressed CFRP laminates for strengthening of RCC structures including practical applications on slabs and bridges. Also it elucidates the post strengthening testing carried out for the validation of this technique.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Barnes, S., L. Kirssin, E. Needham, E. Baharlou, D. E. Carr e J. Ma. "3D printing of ecologically active soil structures". Additive Manufacturing 52 (abril de 2022): 102670. http://dx.doi.org/10.1016/j.addma.2022.102670.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Sakamotu, Mitsuo. "Applications to Building Structures on Active Control". IEEJ Transactions on Industry Applications 119, n.º 7 (1999): 926–31. http://dx.doi.org/10.1541/ieejias.119.926.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Suzuki, Tetsuo, Mitsuru Kageyama e Arihide Nobata. "Active Vibration Control System for Tall Structures". Journal of Robotics and Mechatronics 6, n.º 4 (20 de agosto de 1994): 327–31. http://dx.doi.org/10.20965/jrm.1994.p0327.

Texto completo da fonte
Resumo:
The authors, concerned with the enhancement of living comfort in tall structures during strong winds or medium to small-scale earthquakes, have developed an active vibration control system which is capable of controlling a multiple number of vibration modes at the same time, and have already demonstrated the usefulness of this system by conducting verification experiments using a small device1) and an actual-size device2). And this time, an active vibration control system based on the research results obtained up to now has been applied to an actual structure for the first time in the world. This report describes an outline of this system.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Preumont, A., e Y. Achkire. "Active Damping of Structures with Guy Cables". Journal of Guidance, Control, and Dynamics 20, n.º 2 (março de 1997): 320–26. http://dx.doi.org/10.2514/2.4040.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Malhis, M., L. Gaudiller e J. Der Hagopian. "Fuzzy Modal Active Control of Flexible Structures". Journal of Vibration and Control 11, n.º 1 (janeiro de 2005): 67–88. http://dx.doi.org/10.1177/10775463045046028.

Texto completo da fonte
Resumo:
In this paper we propose a new active control strategy to control the dynamic behavior of flexible structures: fuzzy modal control (FMC). This strategy, based on the modal state feedback of the structure, uses independent fuzzy controllers for each mode to be controlled. This method is applied to a flexible beam controlled by a transverse plane of action using piezoelectric actuators. First of all, a model of a piezoelectric actuator is proposed, followed by the formulation of a finite-element model of the mechanical structure/actuator. The model is then fitted using an identification of the characteristics. After modal reduction, the FMC is carried out in two steps: the control of the beam in only one transverse direction by a piezoelectric pusher, then in two transverse directions by two orthogonal piezoelectric pushers located on the same plane. A digital controller was built in the Matlab®-Simulink® environment, and implemented on specialized cards in order to perform the corresponding experiment. The method is validated by comparing the results between the simulation and the experiment.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Zhu, Yiwen, Audrey Sulkanen, Gang-Yu Liu e Gang Sun. "Daylight-Active Cellulose Nanocrystals Containing Anthraquinone Structures". Materials 13, n.º 16 (11 de agosto de 2020): 3547. http://dx.doi.org/10.3390/ma13163547.

Texto completo da fonte
Resumo:
Antimicrobial and antiviral materials have attracted significant interest in recent years due to increasing occurrences of nosocomial infections and pathogenic microbial contamination. One method to address this is the combination of photoactive compounds that can produce reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals to disinfect microbes, with carrier materials that meet the application requirements. Using anthraquinone (AQ) and cellulose nanocrystals (CNCs) as the photoactive and carrier components, respectively, this work demonstrated the first covalent incorporation of AQ onto CNCs. The morphology and the photoactive properties were investigated, revealing the structural integrity of the CNCs and the high degree of photoactivity of the AQ-CNC materials upon UVA exposure. The AQ-CNCs also exhibited an unexpected persistent generation of ROS under darkness, which adds advantages for antimicrobial applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Sommerfeldt, Scott D. "Active control of radiation from vibrating structures." Journal of the Acoustical Society of America 91, n.º 4 (abril de 1992): 2348. http://dx.doi.org/10.1121/1.403444.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Alexandropoulos, Dimitris, Hercules Simos, Michael J. Adams e Dimitris Syvridis. "Optical Bistability in Active Semiconductor Microring Structures". IEEE Journal of Selected Topics in Quantum Electronics 14, n.º 3 (2008): 918–26. http://dx.doi.org/10.1109/jstqe.2008.921424.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Hladky‐Hennion, A. ‐C, J. ‐N Decarpigny e B. Hamonic. "Finite element modeling of active periodic structures." Journal of the Acoustical Society of America 90, n.º 4 (outubro de 1991): 2316. http://dx.doi.org/10.1121/1.401034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Gaunaurd, G. C., H. C. Strifors, P. W. B. Moore e H. Huang. "Techniques for active classification of underwater structures". Journal of the Acoustical Society of America 101, n.º 5 (maio de 1997): 3151–52. http://dx.doi.org/10.1121/1.419073.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia