Literatura científica selecionada sobre o tema "Acoustical engineering"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Acoustical engineering".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Acoustical engineering"
Burkhard, Mahlon D. "Acoustical standards in engineering acoustics". Journal of the Acoustical Society of America 115, n.º 5 (maio de 2004): 2434. http://dx.doi.org/10.1121/1.4781590.
Texto completo da fonteHaberman, Michael R. "Introduction to the Technical Committee on Engineering Acoustics". Journal of the Acoustical Society of America 155, n.º 3_Supplement (1 de março de 2024): A29. http://dx.doi.org/10.1121/10.0026675.
Texto completo da fonteMolevich, Nonna E., Anatoly I. Klimov e Vladimir G. Makaryan. "Influence of Thermodynamic Nonequilibrium on the Acoustic Properties of Gases". International Journal of Aeroacoustics 4, n.º 3 (julho de 2005): 373–83. http://dx.doi.org/10.1260/1475472054771411.
Texto completo da fonteVan Uffelen, Lora, James H. Miller e Gopu R. Potty. "Underwater acoustics and ocean engineering at the University of Rhode Island". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A124. http://dx.doi.org/10.1121/10.0015761.
Texto completo da fonteBrown, David A., Paul J. Gendron e John R. Buck. "Graduate education in acoustic engineering, transduction, and signal processing University of Massachusetts Dartmouth". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A123. http://dx.doi.org/10.1121/10.0015756.
Texto completo da fonteFonseca, William D'Andrea, Eric Brandão, Paulo H. Mareze, Viviane S. G. Melo, Roberto A. Tenenbaum, Christian dos Santos e Dinara Paixão. "Acoustical engineering: A complete academic undergraduate program in Brazil". Journal of the Acoustical Society of America 152, n.º 2 (agosto de 2022): 1180–91. http://dx.doi.org/10.1121/10.0013570.
Texto completo da fonteHioka, Yusuke, Michael Kingan e George Dodd. "Learning effect of active learning coursework in engineering acoustics course". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, n.º 2 (1 de agosto de 2021): 4154–65. http://dx.doi.org/10.3397/in-2021-2617.
Texto completo da fonteBoot, Tim, Frederic Roskam, Phil Coleman, Simon Brown e Julien Laval. "Greater artistic and technological performance through the converged technologies of architectural acoustics, electroacoustic enhancement, and immersive audio technologies". Journal of the Acoustical Society of America 154, n.º 4_supplement (1 de outubro de 2023): A168. http://dx.doi.org/10.1121/10.0023155.
Texto completo da fonteHiremath, Nandeesh, Vaibhav Kumar, Nicholas Motahari e Dhwanil Shukla. "An Overview of Acoustic Impedance Measurement Techniques and Future Prospects". Metrology 1, n.º 1 (11 de maio de 2021): 17–38. http://dx.doi.org/10.3390/metrology1010002.
Texto completo da fonteWang, Zhen Jiang, e Feng Hua Lu. "The Acoustical Design of Conference Room Based on Speech Acoustic". Applied Mechanics and Materials 507 (janeiro de 2014): 127–30. http://dx.doi.org/10.4028/www.scientific.net/amm.507.127.
Texto completo da fonteTeses / dissertações sobre o assunto "Acoustical engineering"
Ozgenel, Caglar Firat. "Developing A Tool For Acoustical Performance Evaluation Throughout The Design". Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614066/index.pdf.
Texto completo da fonteTerry, Jonathan. "Acoustic modeling of an enclosed reverberant environment". Diss., Online access via UMI:, 2007.
Encontre o texto completo da fonteIncludes bibliographical references.
Onur, Cagla. "Acoustic Tracking Of Ship Wakes". Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615656/index.pdf.
Texto completo da fonteLévesque, Sylvain. "Acoustical imaging using wave propagation tomography". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/106041.
Texto completo da fonteLin, Yiqiang Farouk Bakhtier. "Acoustic wave induced convection and transport in gases under normal and micro-gravity conditions /". Philadelphia, Pa. : Drexel University, 2007. http://hdl.handle.net/1860/1795.
Texto completo da fonteRinker, Brett A. "A single-sided access simultaneous solution of acoustic wave speed and sample thickness for isotropic materials of plate-type geometry". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4585.
Texto completo da fonteThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on April 17, 2009) Vita. Includes bibliographical references.
Tan, Lin. "Development of micro-acoustic devices with applications of viscous effects". Diss., Online access via UMI:, 2006.
Encontre o texto completo da fonteAbouchakra, Rabih. "Delay estimation for transform domain acoustical echo cancellation". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ37254.pdf.
Texto completo da fonteZlobec, S. "Linear predictive spectral shaping for acoustical echo cancellation". Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23763.
Texto completo da fonteIn speech-related applications, the covariance matrix of the reference signal is ten nearly singular, i.e., rank-deficient, which has the effect that some of the transform-domain tap coefficients stop adapting and effectively "freeze". During is low-rank phase, this frozen taps can retain any value without effect on the mean-square error (MSE), while the remaining taps track the evolution of the system and keep the MSE at a minimum.
When the covariance matrix becomes nonsingular, however, there are no longer any frozen coefficients, and a unique tap coefficient vector yields minimum MSE. The MSE abruptly "jumps", and convergence of the taps to the unique vector will take additional time due to the (obsolete) values of the previously frozen coefficients. To remedy the situation, one applies a method dubbed "spectral shaping".
The objective of spectral shaping is to replace, during the low-rank phase, each frozen coefficient by an estimate of the corresponding coefficient of the unique full-rank solution. This is achieved in the transform domain by a combination of forward and backward linear predictors. By using spectral shaping, the frozen coefficients are thus "prepared" to be unfrozen when the covariance matrix gains full rank, resulting in a reduced jump in the MSE.
Kondis, Antonios 1980. "Acoustical wave propagation in buried water filled pipes". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30199.
Texto completo da fonteIncludes bibliographical references (p. 145-151).
This thesis presents a comprehensive way of dealing with the problem of acoustical wave propagation in cylindrically layered media with a specific application in water-filled underground pipes. The problem is studied in two stages: First the pipe is considered to be very stiff in relation to the contained fluid and then the stiffness of the pipe and the soil are taken into account. In both cases the solution process can take into account signals of any form, generated in any point inside the pipe. The simplified method provides the basic understanding on wave propagation and noise generation in the pipe in relation to pipe radius and frequency of excitation. Following the simplified analysis, the beam forming method is discussed and applied in order to reduce the noise in the pipe. Moving on to the complete analysis of the pipe, the stiffness matrix method is used to take into account the properties of the system. The solution time is proven to be much higher in this case, but the results vary from the simplified case in many real value problems. The results of the two methods are compared in more detail and then a decision making process for the choice of method is developed. This decision process is based on the frequency of the excitation, the properties of the materials and the dimensions of the system.
by Antonios Kondis.
S.M.
Livros sobre o assunto "Acoustical engineering"
Olson, Harry Ferdinand. Acoustical engineering. Philadelphia, Pa. (P.O. Box 31718, Philadelphia 19147-7718): Professional Audio Journals, 1991.
Encontre o texto completo da fonteLee, Hua. Acoustical imaging. New York: Springer US, 1991.
Encontre o texto completo da fonteBean, Abigail. Engineering acoustics. Delhi: Global Media, 2009.
Encontre o texto completo da fonteTortoli, Piero. Acoustical Imaging. Boston, MA: Springer US, 1996.
Encontre o texto completo da fonteMechel, Fridolin. Room Acoustical Fields. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Encontre o texto completo da fonteJones, Joie Pierce. Acoustical Imaging. Boston, MA: Springer US, 1995.
Encontre o texto completo da fonteBenesty, Jacob. Advances in Network and Acoustic Echo Cancellation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.
Encontre o texto completo da fonteJeannette, Martin, e Boston Museum of Science. Engineering is Elementary Team, eds. Kwame's sound: An acoustical engineering story. Boston, MA: Boston Museum of Science, 2005.
Encontre o texto completo da fonteDracoulis, Georges. Acoustique architecturale & industrielle. Paris: PYC Editions, 1985.
Encontre o texto completo da fonteApfel, Robert E. Deaf architects & blind acousticians?: A guide to the principles of sound design. New Haven, CT: Apfel Enterprises, 1998.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Acoustical engineering"
Daijun, Ouyang, Liu Jiaqi, Huang Jinli, Wu Jianchen e Wei Mingguo. "Application of Seismic Tomography to the Hydroelectric Engineering Exploration". In Acoustical Imaging, 669–76. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2958-3_91.
Texto completo da fontePangraz, S., H. Simon, R. Herzer e W. Arnold. "Non-Destructive Evaluation of Engineering Ceramics by High-Frequency Acoustic Techniques". In Acoustical Imaging, 189–95. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3692-5_20.
Texto completo da fonteEargle, John. "Acoustical Fundamentals for the Recording Engineer". In Handbook of Recording Engineering, 1–42. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9366-8_1.
Texto completo da fontePetrella, Orsola, Giovanni Cerasuolo, Salvatore Ameduri, Vincenzo Quaranta e Marco Laracca. "Calibration System for Multi-sensor Acoustical Systems". In Lecture Notes in Electrical Engineering, 211–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04324-7_28.
Texto completo da fonteAmeduri, S., O. Petrella, V. Quaranta, G. Betta e M. Laracca. "Multisensor Acoustical Systems: Calibration and Related Problems". In Lecture Notes in Electrical Engineering, 67–70. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00684-0_13.
Texto completo da fonteGinevsky, A. S., Ye V. Vlasov e R. K. Karavosov. "Supersonic Nonisobaric Turbulent Jets. Control of Aerodynamic and Acoustical Characteristics". In Foundations of Engineering Mechanics, 173–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-39914-8_7.
Texto completo da fonteLiu, Tao, Jiajia Liu, Zongmei Bai e Ouming Liu. "Acoustical Field Modeling for Communication Through Steel Based on FDTD". In Lecture Notes in Electrical Engineering, 424–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8458-9_45.
Texto completo da fonteTan, W. H., A. S. N. Amirah, S. Ragunathan, N. A. N. Zainab, A. M. Andrew, W. Faridah e E. A. Lim. "Acoustical Analysis and Optimization for Micro-Perforated Panel Sound Absorber". In Lecture Notes in Mechanical Engineering, 587–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0866-7_50.
Texto completo da fonteRienstra, S. W. "Acoustical detection of obstructions in a pipe with a temperature gradient". In Topics in Engineering Mathematics, 151–79. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1814-9_6.
Texto completo da fonteKanade, Vijay A. "A Bio-acoustical Perceptual Sense* for Early Medical Diagnosis and Treatment". In Innovations in Computer Science and Engineering, 519–25. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2043-3_56.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Acoustical engineering"
Bellizzi, Sergio, Bruno Cochelin, Philippe Herzog, Pierre-Olivier Matte´i e Ce´dric Pinhe`de. "Experimental Investigation of Low Frequency Noise Reduction Using a Nonlinear Vibroacoustic Absorber". In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47431.
Texto completo da fonteRETBI, M., e JD POLACK. "HOW ACOUSTICAL ENGINEERING COMPELS ARCHITECTS TO CREATIVITY". In Auditorium Acoustics 2008. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17512.
Texto completo da fonteCai, Liang-Wu, Dacio K. Dacol, Gregory J. Orris, David C. Calvo e Michael Nicholas. "Acoustical Scattering by Multilayer Spherical Objects Containing Electrorheological Fluid". In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12508.
Texto completo da fonteVaitkus, Audrius, Viktoras Vorobjovas, Donatas Čygas, Tadas Andriejauskas e Faustina Tuminienė. "Surface Type and Age Effects on Tyre/Road Noise Levels". In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.152.
Texto completo da fonteMucchi, Emiliano, Elena Pierro e Antonio Vecchio. "Experimental Guidelines for NVH Improvements in Helicopter Vibro-Acoustic Comfort". In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87383.
Texto completo da fonteZhang, Ning, Zhuang Li, Stanley Klemetson e Saikiran Yadagiri. "CFD and Acoustical Analyses for Coastal Highway Erosion". In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37142.
Texto completo da fonteWang, Lily M., e Siu-Kit Lau. "Studying architectural acoustics through the University of Nebraska's Architectural Engineering Program". In 158th Meeting Acoustical Society of America. ASA, 2010. http://dx.doi.org/10.1121/1.3436574.
Texto completo da fonteSharma, Sanjay, e Dennis Siginer. "Permeability Measurement of Orthotropic Fibers Under an Acoustic Force Field". In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78567.
Texto completo da fonteChevret, P., D. Vaucher De La Croix, J. P. Demars, J. Catalifaud, P. Mulocher, G. Le Compagnon e B. Florentz. "3D Inside Vehicle Acoustical Holography". In International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2228.
Texto completo da fonteKang, Yeon June, e J. Stuart Bolton. "Optimal Design of Acoustical Foam Treatments". In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0449.
Texto completo da fonteRelatórios de organizações sobre o assunto "Acoustical engineering"
Mareze, Paulo Henrique, Ranny L. X. N. Michalski, Olavo M. Silva e William D'Andrea Fonseca. Resenhas de livros. William D’Andrea Fonseca, julho de 2020. http://dx.doi.org/10.55753/aev.v35e52.43.
Texto completo da fonteWilliams, Locke, Gary Bell e Duncan Bryant. Setup and data collection process of an Acoustic Doppler Velocimeter (ADV) in a laboratory setting. Engineer Research and Development Center (U.S.), março de 2022. http://dx.doi.org/10.21079/11681/43741.
Texto completo da fonteTang, Dajun, Thomas Austin e Dezhang Chu. Three-Dimensional Acoustic in Situ Imaging of Sediments and Continuation Acoustic Imaging of Shallow Water Sediments Engineering Considerations. Fort Belvoir, VA: Defense Technical Information Center, junho de 1998. http://dx.doi.org/10.21236/ada348240.
Texto completo da fonteMizrach, Amos, Michal Mazor, Amots Hetzroni, Joseph Grinshpun, Richard Mankin, Dennis Shuman, Nancy Epsky e Robert Heath. Male Song as a Tool for Trapping Female Medflies. United States Department of Agriculture, dezembro de 2002. http://dx.doi.org/10.32747/2002.7586535.bard.
Texto completo da fonteGramann, Richard A. ABF Algorithms Implemented at ARL:UT, Technical Report Under Contract N00039-91-C-0082, TD No. 01A1002, FDS System Engineering and Acoustics. Fort Belvoir, VA: Defense Technical Information Center, maio de 1992. http://dx.doi.org/10.21236/ada252368.
Texto completo da fonteHart, Carl. Vibration survey of Room 47 with a laser doppler vibrometer : Main Laboratory Basement, U.S. Army ERDC-CRREL. Engineer Research and Development Center (U.S.), novembro de 2020. http://dx.doi.org/10.21079/11681/38919.
Texto completo da fonteQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), julho de 2021. http://dx.doi.org/10.21079/11681/41325.
Texto completo da fonteLimoges, A., A. Normandeau, J. B R Eamer, N. Van Nieuwenhove, M. Atkinson, H. Sharpe, T. Audet et al. 2022William-Kennedy expedition: Nunatsiavut Coastal Interaction Project (NCIP). Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/332085.
Texto completo da fonteBlais-Stevens, A., A. Castagner, A. Grenier e K D Brewer. Preliminary results from a subbottom profiling survey of Seton Lake, British Columbia. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/332277.
Texto completo da fonteBook reviews: Room Acoustics: Design and Modeling; Array Signal Processing: Concepts and Techniques; Acoustics in Building Rehabilitation; and Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing. Sociedade Brasileira de Acústica (Sobrac), dezembro de 2022. http://dx.doi.org/10.55753/aev.v37e54.201.
Texto completo da fonte