Literatura científica selecionada sobre o tema "Acoustic wave control in water"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Acoustic wave control in water".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Acoustic wave control in water"
Norris, Andrew, Alexey S. Titovich e Michael Haberman. "Acoustic wave control with cylindrical metamaterial elements in water". Journal of the Acoustical Society of America 138, n.º 3 (setembro de 2015): 1733. http://dx.doi.org/10.1121/1.4933459.
Texto completo da fonteSISOMBAT, Félix, Thibaut DEVAUX, Samuel CALLé e Lionel HAUMESSER. "Acoustic reflector remotely tunable by the acoustic radiation force". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, n.º 4 (4 de outubro de 2024): 7893–98. http://dx.doi.org/10.3397/in_2024_4019.
Texto completo da fonteHe, Jiahuan, Wei Zhang, Dan Zhao, Nong Li, Qiang Kang, Kunpeng Cai, Li Wang et al. "Numerical Simulation Analysis of Control Factors on Acoustic Velocity in Carbonate Reservoirs". Minerals 14, n.º 4 (19 de abril de 2024): 421. http://dx.doi.org/10.3390/min14040421.
Texto completo da fonteKos̆tial, Pavol. "Surface acoustic wave control of the ion concentration in water". Applied Acoustics 41, n.º 2 (1994): 187–93. http://dx.doi.org/10.1016/0003-682x(94)90068-x.
Texto completo da fonteKozaczka, Eugeniusz, Jacek Domagalski, Grażyna Grelowska e Ignacy Gloza. "Identification of hydro-acoustic waves emitted from floating units during mooring tests". Polish Maritime Research 14, n.º 4 (1 de outubro de 2007): 40–46. http://dx.doi.org/10.2478/v10012-007-0038-5.
Texto completo da fonteAnisimkin, Vladimir, Vladimir Kolesov, Anastasia Kuznetsova, Elizaveta Shamsutdinova e Iren Kuznetsova. "An Analysis of the Water-to-Ice Phase Transition Using Acoustic Plate Waves". Sensors 21, n.º 3 (29 de janeiro de 2021): 919. http://dx.doi.org/10.3390/s21030919.
Texto completo da fonteLi, Qi, Ke Wu e Mingquan Zhang. "Two-Dimensional Composite Acoustic Metamaterials of Rectangular Unit Cell from Pentamode to Band Gap". Crystals 11, n.º 12 (25 de novembro de 2021): 1457. http://dx.doi.org/10.3390/cryst11121457.
Texto completo da fonteKnight, Rosemary, Jack Dvorkin e Amos Nur. "Acoustic signatures of partial saturation". GEOPHYSICS 63, n.º 1 (janeiro de 1998): 132–38. http://dx.doi.org/10.1190/1.1444305.
Texto completo da fonteMemon, Maria Muzamil, Qiong Liu, Ali Manthar, Tao Wang e Wanli Zhang. "Surface Acoustic Wave Humidity Sensor: A Review". Micromachines 14, n.º 5 (27 de abril de 2023): 945. http://dx.doi.org/10.3390/mi14050945.
Texto completo da fonteM’zoughi, Fares, Izaskun Garrido, Aitor J. Garrido e Manuel De La Sen. "Rotational Speed Control Using ANN-Based MPPT for OWC Based on Surface Elevation Measurements". Applied Sciences 10, n.º 24 (16 de dezembro de 2020): 8975. http://dx.doi.org/10.3390/app10248975.
Texto completo da fonteTeses / dissertações sobre o assunto "Acoustic wave control in water"
Kourchi, Hasna. "Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Texto completo da fonteA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Awodele, M. Kofoworola. "Control of charge transports in semiconductor superlattices using an acoustic wave". Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16738.
Texto completo da fonteTurnbull, Katharine Frances Vogan. "A surface acoustic wave frost point hygrometer for measurements of atmospheric water vapour". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619580.
Texto completo da fonte葉子良 e Tsz-leung Yip. "Active water-wave control by a submerged pitching plate". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237976.
Texto completo da fonteYip, Tsz-leung. "Active water-wave control by a submerged pitching plate /". Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19003067.
Texto completo da fonteEden, L. "Measurements of atmospheric water vapour using a balloon-borne surface acoustic wave frost point hygrometer". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598746.
Texto completo da fonteChen, Feng. "Effect of mesoscale variability of water masses on acoustic wave propagation in a shallow sea". Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3219.
Texto completo da fonteBuck, John R. (John Richard). "Single mode excitation in the shallow water acoustic channel using feedback control". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40604.
Texto completo da fonteLópez, Ríos Juan Carlos. "Water-wave equations and free boundary problems: inverse problems and control". Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135179.
Texto completo da fonteEn este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la que se desliza el fluido. Empezamos por describir las ecuaciones que modelan el fenómeno físico a partir de las leyes de conservación; el modelo general de las ecuaciones de ondas en el agua, escrito para la restricción de la velocidad potencial a la superficie libre, es \begin{equation*} \left\{ \begin{aligned} &\partial_t\zeta-G(\zeta,b)\psi=0, \\ &\partial_t\psi+g\zeta+\frac{1}{2}|\nabla_X\psi|^2-\frac{1}{2(1+|\nabla_X\zeta|^2)}(G(\zeta,b)\psi+\nabla_X\zeta\cdot\nabla_X\psi)^2=0, \end{aligned} \right. \end{equation*} donde $G=G(\zeta,b)\psi$ es el operador Dirichlet-Neumann, el cual contiene la información del fondo $b$, \begin{equation*} G(\zeta,b)\psi:=-\sqrt{1+|\nabla_X\zeta|^2}\partial_n\phi|_{y=\zeta(t,X)}, \end{equation*} y \begin{equation*} \left\{ \begin{array}{rl} & \Delta\phi=0, \quad \R\times(b,\zeta), \\ & \phi|_{y=\zeta}=\psi, \quad \partial_n \phi|_{y=b(X)}=0. \end{array} \right. \end{equation*} Después de describir las condiciones para un teorema de existencia y unicidad de soluciones de las ecuaciones de ondas en el agua, en espacios de Sobolev, nos preguntamos sobre el mínimo de datos necesarios, sobre la superficie libre, para identificar el fondo de manera única. Por la relación que existe entre el operador Dirichlet-Neumann y la velocidad dentro del fluido y utilizando la propiedad de continuación única de las funciones armónicas hemos probado que basta conocer el perfil, la velocidad potencial y la velocidad normal en un instante de tiempo dado y un abierto de $\R$, aún cuando nuestro sistema es de evolución. En la segunda parte se estudia la existencia de soluciones en forma de salto hidráulico para las ecuaciones estacionarias de ondas en el agua, en dimensión dos y su relación con la velocidad aguas arriba, caracterizada por un parámetro adimensional, llamado el número de Froude, $F$, como consecuencia de la existencia de ramas de bifurcación de la solución trivial para el problema \begin{equation*} \mathcal{F}(\eta,F)=\eta+F\widetilde{\psi}_{y^{\prime }}+\frac{\epsilon}{2}(% \widetilde{\psi}_{x^{\prime }}^2+\widetilde{\psi}_{y^{\prime }}^2)-\epsilon^2\eta_x\widetilde{\psi}_{x^{\prime }}\widetilde{\psi}% _{y^{\prime }}+\frac{\epsilon^3}{2}\eta_x^2\widetilde{\psi}_{y^{\prime }}^2; \end{equation*} donde \begin{equation*} \left\{ \begin{aligned} &\Delta\widetilde{\psi}=\epsilon G, && (-L,L)\times(0,1), \\ &\widetilde{\psi}_{x'}=0, && x'=-L,L, \\ &\widetilde{\psi}=0, && y'=0, \\ &\widetilde{\psi}=-F\eta, && y'=1. \end{aligned} \right. \end{equation*}
Dungan, Mary Elizabeth. "Development of a compact sound source for the active control of turbofan inlet noise /". This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-03302010-020615/.
Texto completo da fonteLivros sobre o assunto "Acoustic wave control in water"
Reddy, J. N. Water absorption studies on polymer coated piezoelectriccrystaland surface acoustic wave devices. Manchester: UMIST, 1994.
Encontre o texto completo da fonteUnited States. Environmental Protection Agency. Office of Water, ed. WAVE, water management for the 21st century. [Washington, DC]: U.S. Environmental Protection Agency, Office of Water, 1999.
Encontre o texto completo da fonteHeadrick, Robert Hugh. Analysis of Internal Wave induced mode coupling effects on the 1995 SWARM experiment acoustic transmissions. Springfield, Va: Available from National Technical Information Service, 1997.
Encontre o texto completo da fonteBuck, John R. Single mode excitation in the shallow water acoustic channel using feedback control. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1996.
Encontre o texto completo da fonteFrisk, George V. Report on the Office of Naval Research Shallow Water Acoustics Workshop: April 24-26, 1991. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1992.
Encontre o texto completo da fonteAhrens, John. Irregular wave overtopping of seawall/revetment configurations, Roughans Point, Massachusetts: Experimental model study. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1986.
Encontre o texto completo da fonteAhrens, John. Irregular wave overtopping of seawall/revetment configurations, Roughans Point, Massachusetts: Experimental model study. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1986.
Encontre o texto completo da fonteZhou, Xiaoming, e Gengkai Hu. Acoustic Metamaterials and Wave Control. World Scientific Publishing Co Pte Ltd, 2018.
Encontre o texto completo da fonteKorde, Umesh A., e John V. Ringwood. Hydrodynamic Control of Wave Energy Devices. Cambridge University Press, 2016.
Encontre o texto completo da fonteRingwood, John, e Umesh A. Korde. Hydrodynamic Control of Wave Energy Devices. Cambridge University Press, 2016.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Acoustic wave control in water"
Stone, Austen, Timothy Waters e Jennifer Muggleton. "Focussing Acoustic Waves with Intent to Control Biofouling in Water Pipes". In Mechanisms and Machine Science, 1059–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15758-5_109.
Texto completo da fonteLin, Hejie, Turgay Bengisu e Zissimos P. Mourelatos. "Derivation of Acoustic Wave Equation". In Lecture Notes on Acoustics and Noise Control, 27–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88213-6_2.
Texto completo da fonteLin, Hejie, Turgay Bengisu e Zissimos P. Mourelatos. "Solutions of Acoustic Wave Equation". In Lecture Notes on Acoustics and Noise Control, 49–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88213-6_3.
Texto completo da fonteNayfeh, Adnan H. "Acoustic Wave Reflection from Water/Laminated Composite Interfaces". In Review of Progress in Quantitative Nondestructive Evaluation, 1119–28. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1893-4_128.
Texto completo da fonteKurosawa, Minoru Kuribayashi. "Surface Acoustic Wave Motor Modeling and Motion Control". In Next-Generation Actuators Leading Breakthroughs, 7–18. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-991-6_2.
Texto completo da fonteHoskin, R. E., B. M. Count, N. K. Nichols e D. A. C. Nicol. "Phase Control for the Oscillating Water Column". In Hydrodynamics of Ocean Wave-Energy Utilization, 257–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5_22.
Texto completo da fonteRajan, Subramaniam D., e George V. Frisk. "The Effect of Seasonal Temperature Fluctuations in the Water Column on Sediment Compressional Wave Speed Profiles in Shallow Water". In Ocean Variability & Acoustic Propagation, 69–80. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_5.
Texto completo da fonteUscinski, B. J. "Acoustic Scattering in Wave-Covered Shallow Water. The Coherent Field". In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 329–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_41.
Texto completo da fonteVolkov, Grigory A., Aleksey A. Gruzdkov e Yuri V. Petrov. "A Randomized Approach to Estimate Acoustic Strength of Water". In Mechanics and Control of Solids and Structures, 633–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93076-9_30.
Texto completo da fonteSantiago, J. A. F., e L. C. Wrobel. "Boundary Element Method for Two-Dimensional Shallow Water Acoustic Wave Propagation". In IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method, 281–92. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9793-7_24.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Acoustic wave control in water"
Yun, Gu Qiu, Hu HaoHao, Wang Biao, Zhu RuiQi, Wang Kang e Zuo Wang. "Vibro-Acoustic Characteristics of Ribbed Cylindrical Shells in Shallow Water Based on Wave Superposition". In 2024 OES China Ocean Acoustics (COA), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723699.
Texto completo da fonteMokhtari, Alireza, e Vijay Chatoorgoon. "Study of Wall Thickness and Material Effect on Acoustic Wave Propagation in Water-Filled Piping". In ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-1131.
Texto completo da fonteBender, Florian, Fabien Josse, Rachel E. Mohler e Antonio J. Ricco. "Design of SH-surface acoustic wave sensors for detection of ppb concentrations of BTEX in water". In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702067.
Texto completo da fonteSracic, Michael W., Jordan D. Petrie, Henry A. Moroder, Ryan T. Koniecko, Andrew R. Abramczyk e Kamlesh Suthar. "Acoustic Pressure Fields Generated With a High Frequency Acoustic Levitator". In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71849.
Texto completo da fonteCai, Feyan, Hairong Zheng, Zhaojian He, Zhengyou Liu e Ji Wang. "Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film deposited on steel plate in water". In 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5441953.
Texto completo da fonteFriedt, J. M., L. El Fissi, F. Cherioux, B. Guichardaz, V. Blondeau-Patissier e S. Ballandras. "Design and Use of Wafer Level Fluidic Packaging for Surface Acoustic Wave Sensors". In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319099.
Texto completo da fonteDunham, Eric M., Junwei Zhang e Dan Moos. "Constraints on Pipe Friction and Perforation Cluster Efficiency from Water Hammer Analysis". In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212337-ms.
Texto completo da fonteAndrienko, Yu A. "Generation of focused shock waves in medicine using lasers". In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf22.
Texto completo da fonteGupta, Samikhshak, e Vijaya V. N. Sriram Malladi. "Utilizing Steady-State Traveling Waves in a Quiescent Water Environment for Particle Propulsion". In ASME 2024 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/smasis2024-140461.
Texto completo da fonteWang, Y. Jenny, e Brian W. Anthony. "Using Local Concentration to Model the Progress of Acoustophoretic Assembly of Microspheres in Planar Standing Waves". In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112310.
Texto completo da fonteRelatórios de organizações sobre o assunto "Acoustic wave control in water"
Yamamoto, Tokuo. Models of Acoustic Wave Scattering at 0.2-10 kHz From Turbulence in Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2008. http://dx.doi.org/10.21236/ada533110.
Texto completo da fonteOrr, Marshall H. The Influence of the Shallow Water Internal Wave Field on the Properties of Acoustic Signals. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1997. http://dx.doi.org/10.21236/ada629255.
Texto completo da fonteGodin, Oleg A., e Alexander G. Voronovich. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2006. http://dx.doi.org/10.21236/ada613572.
Texto completo da fonteGodin, Oleg A., e Alexander G. Voronovich. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2007. http://dx.doi.org/10.21236/ada541756.
Texto completo da fonteYamamoto, Tokuo. Measurement and Modeling of Low Frequency Acoustic Wave Propagation and Scattering in Shallow Water with Comprehensive Subbottom Structure Measurements. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1996. http://dx.doi.org/10.21236/ada305049.
Texto completo da fonteKhan, Fenton, Gary E. Johnson, Ida M. Royer, Nathan RJ Phillips, James S. Hughes, Eric S. Fischer, Kenneth D. Ham e Gene R. Ploskey. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010. Office of Scientific and Technical Information (OSTI), abril de 2012. http://dx.doi.org/10.2172/1042547.
Texto completo da fonteKhan, Fenton, Gary E. Johnson, Ida M. Royer, Nathan RJ Phillips, James S. Hughes, Eric S. Fischer e Gene R. Ploskey. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010. Office of Scientific and Technical Information (OSTI), outubro de 2011. http://dx.doi.org/10.2172/1029871.
Texto completo da fonteWadman, Heidi, e Jesse McNinch. Use of chirp sub-bottom acoustics to assess integrity of water-control structures : Inner Harbor Navigation Canal Lock, New Orleans. Engineer Research and Development Center (U.S.), setembro de 2024. http://dx.doi.org/10.21079/11681/49198.
Texto completo da fontePosacka, Anna, e Peter Ross. Tackling microfibre pollution through science, policy, and innovation: A framework for Canadian leadership. Raincoast Conservation Foundation, novembro de 2024. http://dx.doi.org/10.70766/47.9973.
Texto completo da fonteO'Connell, Kelly, David Burdick, Melissa Vaccarino, Colin Lock, Greg Zimmerman e Yakuta Bhagat. Coral species inventory at War in the Pacific National Historical Park: Final report. National Park Service, 2024. http://dx.doi.org/10.36967/2302040.
Texto completo da fonte