Artigos de revistas sobre o tema "Acoustic material characterisatio"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Acoustic material characterisatio".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zhao, Tianfei, Baorui Pan, Xiang Song, Dan Sui, Heye Xiao e Jie Zhou. "Heuristic Approaches Based on Modified Three-Parameter Model for Inverse Acoustic Characterisation of Sintered Metal Fibre Materials". Mathematics 10, n.º 18 (8 de setembro de 2022): 3264. http://dx.doi.org/10.3390/math10183264.
Texto completo da fontePETTONI POSSENTI, Vincenzo, Emanuele MACCAFERRI, Gioia FUSARO, Luca BARBARESI e Laura MAZZOCCHETTI. "Preliminary investigation of nanofibrous membranes for sound absorption". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, n.º 4 (4 de outubro de 2024): 7051–57. http://dx.doi.org/10.3397/in_2024_3903.
Texto completo da fonteTandon, R. P., e Ramadhar Singh. "Development and Characterisation of Composite Hydrophones". Engineering Plastics 2, n.º 5 (janeiro de 1994): 147823919400200. http://dx.doi.org/10.1177/147823919400200502.
Texto completo da fonteTandon, R. P., e Ramadhar Singh. "Development and Characterisation of Composite Hydrophones". Polymers and Polymer Composites 2, n.º 5 (janeiro de 1994): 287–92. http://dx.doi.org/10.1177/096739119400200502.
Texto completo da fonteNuawi, Mohd Zaki, Abdul Rahim Bahari, Shahrum Abdullah, Ahmad Kamal Ariffin Mohd Ihsan e Fauziana Lamin. "Material Property Characterisation Method Using Vibro-Acoustic Signals". Applied Mechanics and Materials 663 (outubro de 2014): 447–52. http://dx.doi.org/10.4028/www.scientific.net/amm.663.447.
Texto completo da fonteWłodarska, Dorota, Andrzej Klepka, Wieslaw Jerzy Staszewski e Tadeusz Uhl. "Comparative Study of Instantaneous Frequency Extraction in Nonlinear Acoustics Used for Structural Damage Detection". Key Engineering Materials 588 (outubro de 2013): 33–42. http://dx.doi.org/10.4028/www.scientific.net/kem.588.33.
Texto completo da fonteWang, Lian, Lian Wang e Victor Humphrey. "The use of a parametric array source and nearfield scanning in the characterisation of panel materials for underwater acoustics". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, n.º 1 (1 de fevereiro de 2023): 6403–12. http://dx.doi.org/10.3397/in_2022_0965.
Texto completo da fonteMao, Huina, Romain Rumpler e Peter Göransson. "An inverse method for design and characterisation of acoustic materials". MATEC Web of Conferences 304 (2019): 02002. http://dx.doi.org/10.1051/matecconf/201930402002.
Texto completo da fonteClaes, Leander, Sarah Johannesmann, Henning Zeipert e Bernd Henning. "Broadband acoustic waves in plate-like structures for acoustic material characterisation". Journal of Physics: Conference Series 2822, n.º 1 (1 de setembro de 2024): 012171. http://dx.doi.org/10.1088/1742-6596/2822/1/012171.
Texto completo da fonteCiaburro, Giuseppe, Gino Iannace, Laura Ricciotti, Antonio Apicella, Valeria Perrotta e Raffaella Aversa. "Acoustic Applications of a Foamed Geopolymeric-Architected Metamaterial". Applied Sciences 14, n.º 3 (31 de janeiro de 2024): 1207. http://dx.doi.org/10.3390/app14031207.
Texto completo da fonteHamadou-Ali, Mohamed, Amar Benazzouk e Haikel Ben Hamed. "Viability of flax particles to develop cellular construction materials: Physico-mechanical characterisation". Journal of Building Materials and Structures 9, n.º 2 (28 de dezembro de 2022): 133–40. http://dx.doi.org/10.34118/jbms.v9i2.2782.
Texto completo da fonteNguyen, Vu Hieu, Quoc-Bao Nguyen, Camille Perrot, Agustín Rios de Anda, Estelle Renard e Salah Naili. "Multiscale characterisation of acoustic behaviour of a new bio-based porous material". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, n.º 4 (1 de fevereiro de 2023): 3966–71. http://dx.doi.org/10.3397/in_2022_0565.
Texto completo da fonteClaes, Leander, Hanna Schmiegel, Clemens Grünsteidl, Sarah Johannesmann, Manuel Webersen e Bernd Henning. "Investigating peculiarities of piezoelectric detection methods for acoustic plate waves in material characterisation applications". tm - Technisches Messen 88, n.º 3 (22 de janeiro de 2021): 147–55. http://dx.doi.org/10.1515/teme-2020-0098.
Texto completo da fonteMat Daud, Anis Nazihah, Md Supar Rohani e Rosly Jaafar. "Acoustic Characterisation of Konjac Glucomannan Gel as a Medical Phantom". Solid State Phenomena 268 (outubro de 2017): 379–83. http://dx.doi.org/10.4028/www.scientific.net/ssp.268.379.
Texto completo da fonteLi, Wenqi, Jethro Coulson, John W. Aveson, Richard J. Smith, Matt Clark, Michael G. Somekh e Steve D. Sharples. "Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy". Journal of Physics: Conference Series 520 (3 de junho de 2014): 012017. http://dx.doi.org/10.1088/1742-6596/520/1/012017.
Texto completo da fonteHopper, C., S. Assous, P. B. Wilkinson, D. A. Gunn, P. D. Jackson, J. G. Rees, R. L. O'Leary e M. A. Lovell. "Bioinspired Low-Frequency Material Characterisation". Advances in Acoustics and Vibration 2012 (5 de abril de 2012): 1–12. http://dx.doi.org/10.1155/2012/927903.
Texto completo da fonteNuawi, Mohd Zaki, Abdul Rahim Bahari, Shahrum Abdullah e Ahmad Kamal Ariffin. "Comparison of Young's Modulus Property Determination of Metallic Materials under Two Statistical Analysis Methods". Advanced Materials Research 894 (fevereiro de 2014): 186–91. http://dx.doi.org/10.4028/www.scientific.net/amr.894.186.
Texto completo da fonteGaborit, Mathieu, e Luc Jaouen. "Using data-driven techniques to provide feedback during material characterisation". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, n.º 5 (1 de fevereiro de 2023): 2305–9. http://dx.doi.org/10.3397/in_2022_0330.
Texto completo da fonteJohannesmann, Sarah, Julia Düchting, Manuel Webersen, Leander Claes e Bernd Henning. "An acoustic waveguide-based approach to the complete characterisation of linear elastic, orthotropic material behaviour". tm - Technisches Messen 85, n.º 7-8 (26 de julho de 2018): 478–86. http://dx.doi.org/10.1515/teme-2017-0132.
Texto completo da fonteYan, Zhu Ge. "A Review of Aerogels and Their Application as a Multi-functional Building Material". Applied Mechanics and Materials 253-255 (dezembro de 2012): 564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.253-255.564.
Texto completo da fonteEgab, Laith, Xu Wang e Mohammad Fard. "Acoustical characterisation of porous sound absorbing materials: a review". International Journal of Vehicle Noise and Vibration 10, n.º 1/2 (2014): 129. http://dx.doi.org/10.1504/ijvnv.2014.059634.
Texto completo da fonteDibben, Nicola. "What Do We Hear, When We Hear Music?: Music Perception and Musical Material". Musicae Scientiae 5, n.º 2 (setembro de 2001): 161–94. http://dx.doi.org/10.1177/102986490100500203.
Texto completo da fonteSolodov, I., K. Pfleiderer, H. Gerhard e G. Busse. "Nonlinear acoustic approach to material characterisation of polymers and composites in tensile tests". Ultrasonics 42, n.º 1-9 (abril de 2004): 1011–15. http://dx.doi.org/10.1016/j.ultras.2003.12.020.
Texto completo da fonteBrewin, M. P., M. J. Birch, D. J. Mehta, J. W. Reeves, S. Shaw, C. Kruse, J. R. Whiteman et al. "Characterisation of Elastic and Acoustic Properties of an Agar-Based Tissue Mimicking Material". Annals of Biomedical Engineering 43, n.º 10 (14 de março de 2015): 2587–96. http://dx.doi.org/10.1007/s10439-015-1294-7.
Texto completo da fonteAoujdad, Khalid, BA Elhadji-Amadou, Pierre Marechal, Damien Leduc, Alexandre Vivet, Florian Gehring e Mounsif ECH-CHERIF El-Kettani. "Integrated analysis of materials for offshore wind turbine blades: mechanical and acoustical coupling". Journal of Physics: Conference Series 2904, n.º 1 (1 de novembro de 2024): 012004. http://dx.doi.org/10.1088/1742-6596/2904/1/012004.
Texto completo da fonteMohammed, Bizuayehu Y., Chee K. Tan, Steven J. Wilcox e Alex Z. S. Chong. "Damage Characterisation of Carbon Fibre Reinforced Composite Plate Using Acoustic Emission". Key Engineering Materials 558 (junho de 2013): 184–94. http://dx.doi.org/10.4028/www.scientific.net/kem.558.184.
Texto completo da fonteAlba, Jesús, e Jaime Ramis. "An Alternative Method for the Characterisation of Fibrous Materials from Measurements of Absorption Using Techniques Based on the Allard and Champoux Model". Noise & Vibration Worldwide 31, n.º 8 (setembro de 2000): 19–25. http://dx.doi.org/10.1260/0957456001497968.
Texto completo da fonteBrand, Felix, e Klaus Stefan Drese. "Frequency-Resolved High-Frequency Broadband Measurement of Acoustic Longitudinal Waves by Laser-Based Excitation and Detection". Sensors 24, n.º 5 (1 de março de 2024): 1630. http://dx.doi.org/10.3390/s24051630.
Texto completo da fonteSmith, Elliott, Luzhen Nie, James McLaughlan, Harry Clegg, Thomas Carpenter, David Cowell, Stephen Evans, Alejandro F. Frangi e Steven Freear. "An Open Access Chamber Designed for the Acoustic Characterisation of Microbubbles". Applied Sciences 12, n.º 4 (10 de fevereiro de 2022): 1818. http://dx.doi.org/10.3390/app12041818.
Texto completo da fonteStockburger, Eugen, Hendrik Wester e Bernd-Arno Behrens. "Fracture Characterisation and Modelling of AHSS Using Acoustic Emission Analysis for Deep Drawing". Journal of Manufacturing and Materials Processing 7, n.º 4 (5 de julho de 2023): 127. http://dx.doi.org/10.3390/jmmp7040127.
Texto completo da fonteAlchakra, W., K. Allaf e J. M. Ville. "Acoustical emission technique applied to the characterisation of brittle materials". Applied Acoustics 52, n.º 1 (setembro de 1997): 53–69. http://dx.doi.org/10.1016/s0003-682x(97)00007-8.
Texto completo da fonteAlba, Jesús, e Jaime Ramis. "The Characterisation of Fibrous Materials from Measurements of Absorption Using Techniques Based on Miki's Model". Noise & Vibration Worldwide 31, n.º 5 (maio de 2000): 14–18. http://dx.doi.org/10.1260/0957456001497607.
Texto completo da fonteSendrowicz, Aleksander, Aleksander Omholt Myhre, Seweryn Witold Wierdak e Alexei Vinogradov. "Challenges and Accomplishments in Mechanical Testing Instrumented by In Situ Techniques: Infrared Thermography, Digital Image Correlation, and Acoustic Emission". Applied Sciences 11, n.º 15 (22 de julho de 2021): 6718. http://dx.doi.org/10.3390/app11156718.
Texto completo da fonteGong, Hai, Jia Liu, Tao Zhang, Xuan Cao e Long Zhang. "Accuracy improvement of inner defects of cylindrical components using ultrasonic detection with modified ALOK method". Insight - Non-Destructive Testing and Condition Monitoring 66, n.º 3 (1 de março de 2024): 159–66. http://dx.doi.org/10.1784/insi.2024.66.3.159.
Texto completo da fonteChotard, Thierry, Lizeth Arbelaez Morales, Marie-Laure Bouchetou e Jacques Poirier. "Thermomechanical Characterisation of Mullite Zirconia Composites Sintered from Andalusite for High Temperature Applications". Ceramics 2, n.º 4 (6 de dezembro de 2019): 587–601. http://dx.doi.org/10.3390/ceramics2040046.
Texto completo da fonteŠafarič, Riko, Lidija Fras Zemljič, Miroslav Novak, Bogdan Dugonik, Božidar Bratina, Nenad Gubeljak, Silvester Bolka e Simona Strnad. "Preparation and Characterisation of Waste Poultry Feathers Composite Fibreboards". Materials 13, n.º 21 (4 de novembro de 2020): 4964. http://dx.doi.org/10.3390/ma13214964.
Texto completo da fonteSun, Bo, Chuang Zhang, Suzhen Liu, Liang Jin e Qingxin Yang. "Acoustic Response Characteristics of Lithium Cobaltate/Graphite Battery during Cycling". Journal of The Electrochemical Society 169, n.º 3 (1 de março de 2022): 030511. http://dx.doi.org/10.1149/1945-7111/ac5061.
Texto completo da fonteBéCOT, François-Xavier, Fabien CHEVILLOTTE, François BESSAC e Alain GINESTET. "Characterisation and simulation of a general ventilation filter based on a double porosity approach". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, n.º 1 (4 de outubro de 2024): 10113–23. http://dx.doi.org/10.3397/in_2024_4391.
Texto completo da fontePrylepa, A., C. Reitböck, M. Cobet, A. Jesacher, X. Jin, R. Adelung, M. Schatzl-Linder et al. "Material characterisation with methods of nonlinear optics". Journal of Physics D: Applied Physics 51, n.º 4 (4 de janeiro de 2018): 043001. http://dx.doi.org/10.1088/1361-6463/aa9df4.
Texto completo da fonteTRIPATHI, NEETU. "A Review on Auxetic Polymeric Materials: Synthetic Methodology, Characterization and their Applications". Journal of Polymer Materials 40, n.º 3-4 (22 de março de 2024): 227–69. http://dx.doi.org/10.32381/jpm.2023.40.3-4.8.
Texto completo da fonteScruby, C. B., K. A. Stacey e G. R. Baldwin. "Defect characterisation in three dimensions by acoustic emission". Journal of Physics D: Applied Physics 19, n.º 9 (14 de setembro de 1986): 1597–612. http://dx.doi.org/10.1088/0022-3727/19/9/006.
Texto completo da fonteScruby, C. B., G. R. Baldwin e K. A. Stacey. "Characterisation of fatigue crack extension by quantitative acoustic emission". International Journal of Fracture 28, n.º 4 (agosto de 1985): 201–22. http://dx.doi.org/10.1007/bf00035216.
Texto completo da fonteButtle, D. J., e C. B. Scruby. "Characterisation of fatigue of aluminium alloys by acoustic emission". NDT & E International 25, n.º 6 (dezembro de 1992): 300. http://dx.doi.org/10.1016/0963-8695(92)90739-4.
Texto completo da fonteVoltaire, Joakim, Ulla Mattila, Andrew Fogden, Susanna Nieminen e Heidi Reinius. "Acoustic characterisation of film splitting in a HSWO printing nip". Nordic Pulp & Paper Research Journal 22, n.º 4 (1 de dezembro de 2007): 424–31. http://dx.doi.org/10.3183/npprj-2007-22-04-p424-431.
Texto completo da fonteThomas, Sadiq, e Evans Chinemezu Ashigwuike. "Defect characterisation in ferromagnetic and non-ferromagnetic aircraft plate materials using an electromagnetic acoustic transducer". International Journal of Microstructure and Materials Properties 9, n.º 3/4/5 (2014): 401. http://dx.doi.org/10.1504/ijmmp.2014.066919.
Texto completo da fonteNuawi, M. Z., A. R. Bahari, S. Abdullah, A. K. Ariffin e Z. M. Nopiah. "Time Domain Analysis Method of the Impulse Vibro-acoustic Signal for Fatigue Strength Characterisation of Metallic Material". Procedia Engineering 66 (2013): 539–48. http://dx.doi.org/10.1016/j.proeng.2013.12.106.
Texto completo da fonteCarboni, M., e A. Bernasconi. "Acoustic emission-based monitoring of fatigue damage in CFRP-CFRP adhesively bonded joints". Insight - Non-Destructive Testing and Condition Monitoring 64, n.º 7 (1 de julho de 2022): 393–97. http://dx.doi.org/10.1784/insi.2022.64.7.393.
Texto completo da fonteAlba, Jesus, Jaime Ramis e Jaime Llinares. "The Characterisation of Fibrous Materials from Measurements of Absorption Using Techniques Based on the Voronina Model". Noise & Vibration Worldwide 31, n.º 3 (março de 2000): 14–19. http://dx.doi.org/10.1260/0957456001497418.
Texto completo da fonteTrinchi, A., W. Wlodarski, Sandro Santucci, D. Di Claudio, Maurizio Passacantando, C. Cantalini, B. Rout, S. J. Ippolito, K. Kalantar-Zadeh e G. Sberveglieri. "Microstructural Characterisation of RF Magnetron Sputtered ZnO Thin Films on SiC". Solid State Phenomena 99-100 (julho de 2004): 123–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.99-100.123.
Texto completo da fonteFerreira, D. B. B., R. R. da Silva, J. M. A. Rebello e M. H. S. Siqueira. "Failure mechanism characterisation in composite materials using spectral analysis and the wavelet transform of acoustic emission signals". Insight - Non-Destructive Testing and Condition Monitoring 46, n.º 5 (maio de 2004): 282–89. http://dx.doi.org/10.1784/insi.46.5.282.55560.
Texto completo da fonte