Artigos de revistas sobre o tema "Acidic patch"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Acidic patch".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Skrajna, Aleksandra, Dennis Goldfarb, Katarzyna M. Kedziora, Emily M. Cousins, Gavin D. Grant, Cathy J. Spangler, Emily H. Barbour et al. "Comprehensive nucleosome interactome screen establishes fundamental principles of nucleosome binding". Nucleic Acids Research 48, n.º 17 (7 de julho de 2020): 9415–32. http://dx.doi.org/10.1093/nar/gkaa544.
Texto completo da fonteCucinotta, Christine E., A. Elizabeth Hildreth, Brendan M. McShane, Margaret K. Shirra e Karen M. Arndt. "The nucleosome acidic patch directly interacts with subunits of the Paf1 and FACT complexes and controls chromatin architecture in vivo". Nucleic Acids Research 47, n.º 16 (21 de junho de 2019): 8410–23. http://dx.doi.org/10.1093/nar/gkz549.
Texto completo da fonteKalashnikova, Anna A., Mary E. Porter-Goff, Uma M. Muthurajan, Karolin Luger e Jeffrey C. Hansen. "The role of the nucleosome acidic patch in modulating higher order chromatin structure". Journal of The Royal Society Interface 10, n.º 82 (6 de maio de 2013): 20121022. http://dx.doi.org/10.1098/rsif.2012.1022.
Texto completo da fonteOleinikov, Pavel D., Anastasiia S. Fedulova, Grigoriy A. Armeev, Nikita A. Motorin, Lovepreet Singh-Palchevskaia, Anastasiia L. Sivkina, Pavel G. Feskin et al. "Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study". International Journal of Molecular Sciences 24, n.º 20 (14 de outubro de 2023): 15194. http://dx.doi.org/10.3390/ijms242015194.
Texto completo da fonteNavarro Negredo, Paloma, James R. Edgar, Antoni G. Wrobel, Nathan R. Zaccai, Robin Antrobus, David J. Owen e Margaret S. Robinson. "Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting". Journal of Cell Biology 216, n.º 9 (25 de julho de 2017): 2927–43. http://dx.doi.org/10.1083/jcb.201602058.
Texto completo da fonteDebelouchina, Galia T., Karola Gerecht e Tom W. Muir. "Ubiquitin utilizes an acidic surface patch to alter chromatin structure". Nature Chemical Biology 13, n.º 1 (21 de novembro de 2016): 105–10. http://dx.doi.org/10.1038/nchembio.2235.
Texto completo da fonteBirrane, Gabriel, Anne P. Beigneux, Brian Dwyer, Bettina Strack-Logue, Kristian Kølby Kristensen, Omar L. Francone, Loren G. Fong et al. "Structure of the lipoprotein lipase–GPIHBP1 complex that mediates plasma triglyceride hydrolysis". Proceedings of the National Academy of Sciences 116, n.º 5 (17 de dezembro de 2018): 1723–32. http://dx.doi.org/10.1073/pnas.1817984116.
Texto completo da fonteBatchelor, Lucinda K., Louis De Falco, Paul J. Dyson e Curtis A. Davey. "Viral peptide conjugates for metal-warhead delivery to chromatin". RSC Advances 14, n.º 13 (2024): 8718–25. http://dx.doi.org/10.1039/d4ra01617c.
Texto completo da fonteCROWLEY, Peter B., David M. HUNTER, Katsuko SATO, William McFARLANE e Christopher DENNISON. "The parsley plastocyanin-turnip cytochrome f complex: a structurally distorted but kinetically functional acidic patch". Biochemical Journal 378, n.º 1 (15 de fevereiro de 2004): 45–51. http://dx.doi.org/10.1042/bj20031423.
Texto completo da fonteHaneburger, Ina, Andreas Eichinger, Arne Skerra e Kirsten Jung. "New Insights into the Signaling Mechanism of the pH-responsive, Membrane-integrated Transcriptional Activator CadC of Escherichia coli". Journal of Biological Chemistry 286, n.º 12 (6 de janeiro de 2011): 10681–89. http://dx.doi.org/10.1074/jbc.m110.196923.
Texto completo da fonteGuiney, Evan L., Till Klecker e Scott D. Emr. "Identification of the endocytic sorting signal recognized by the Art1-Rsp5 ubiquitin ligase complex". Molecular Biology of the Cell 27, n.º 25 (15 de dezembro de 2016): 4043–54. http://dx.doi.org/10.1091/mbc.e16-08-0570.
Texto completo da fonteNakabayashi, Yu, e Masayuki Seki. "Functional Analyses of an Evolutionarily Conserved Acidic Patch on the Nucleosome". Biological and Pharmaceutical Bulletin 46, n.º 11 (1 de novembro de 2023): 1619–24. http://dx.doi.org/10.1248/bpb.b23-00480.
Texto completo da fonteKujirai, Tomoya, Christian Zierhut, Yoshimasa Takizawa, Ryan Kim, Lumi Negishi, Nobuki Uruma, Seiya Hirai, Hironori Funabiki e Hitoshi Kurumizaka. "Structural basis for the inhibition of cGAS by nucleosomes". Science 370, n.º 6515 (10 de setembro de 2020): 455–58. http://dx.doi.org/10.1126/science.abd0237.
Texto completo da fonteHo, Cheng-Han, Yoshimasa Takizawa, Wataru Kobayashi, Yasuhiro Arimura, Hiroshi Kimura e Hitoshi Kurumizaka. "Structural basis of nucleosomal histone H4 lysine 20 methylation by SET8 methyltransferase". Life Science Alliance 4, n.º 4 (11 de fevereiro de 2021): e202000919. http://dx.doi.org/10.26508/lsa.202000919.
Texto completo da fonteLesbats, Paul, Erik Serrao, Daniel P. Maskell, Valerie E. Pye, Nicola O’Reilly, Dirk Lindemann, Alan N. Engelman e Peter Cherepanov. "Structural basis for spumavirus GAG tethering to chromatin". Proceedings of the National Academy of Sciences 114, n.º 21 (10 de maio de 2017): 5509–14. http://dx.doi.org/10.1073/pnas.1621159114.
Texto completo da fonteGallego, Laura D., Medini Ghodgaonkar Steger, Anton A. Polyansky, Tobias Schubert, Bojan Zagrovic, Ning Zheng, Tim Clausen, Franz Herzog e Alwin Köhler. "Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6–Bre1". Proceedings of the National Academy of Sciences 113, n.º 38 (6 de setembro de 2016): 10553–58. http://dx.doi.org/10.1073/pnas.1606863113.
Texto completo da fonteDao, Hai T., Barbara E. Dul, Geoffrey P. Dann, Glen P. Liszczak e Tom W. Muir. "A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing". Nature Chemical Biology 16, n.º 2 (9 de dezembro de 2019): 134–42. http://dx.doi.org/10.1038/s41589-019-0413-4.
Texto completo da fonteSato, Katsuko, Takamitsu Kohzuma e Christopher Dennison. "Pseudospecificity of the Acidic Patch of Plastocyanin for the Interaction with Cytochromef". Journal of the American Chemical Society 126, n.º 10 (março de 2004): 3028–29. http://dx.doi.org/10.1021/ja038188k.
Texto completo da fonteBortoluzzi, Alessio, Anastasia Amato, Xavier Lucas, Manuel Blank e Alessio Ciulli. "Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains". Biochemical Journal 474, n.º 10 (4 de maio de 2017): 1633–51. http://dx.doi.org/10.1042/bcj20161053.
Texto completo da fonteZhu, Michael X. "A well-known potassium channel plays a critical role in lysosomes". Journal of Cell Biology 216, n.º 6 (16 de maio de 2017): 1513–15. http://dx.doi.org/10.1083/jcb.201704017.
Texto completo da fonteLehmann, Laura C., Luka Bacic, Graeme Hewitt, Klaus Brackmann, Anton Sabantsev, Guillaume Gaullier, Sofia Pytharopoulou et al. "Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch". Cell Reports 33, n.º 12 (dezembro de 2020): 108529. http://dx.doi.org/10.1016/j.celrep.2020.108529.
Texto completo da fonteWong, Won Fen, Kuan Ping Ang, Gautam Sethi e Chung Yeng Looi. "Recent Advancement of Medical Patch for Transdermal Drug Delivery". Medicina 59, n.º 4 (17 de abril de 2023): 778. http://dx.doi.org/10.3390/medicina59040778.
Texto completo da fonteMcBride, Matthew J., Nazar Mashtalir, Evan B. Winter, Hai T. Dao, Martin Filipovski, Andrew R. D’Avino, Hyuk-Soo Seo et al. "The nucleosome acidic patch and H2A ubiquitination underlie mSWI/SNF recruitment in synovial sarcoma". Nature Structural & Molecular Biology 27, n.º 9 (3 de agosto de 2020): 836–45. http://dx.doi.org/10.1038/s41594-020-0466-9.
Texto completo da fonteSato, Shoko, Yoshimasa Takizawa, Fumika Hoshikawa, Mariko Dacher, Hiroki Tanaka, Hiroaki Tachiwana, Tomoya Kujirai et al. "Cryo-EM structure of the nucleosome core particle containing Giardia lamblia histones". Nucleic Acids Research 49, n.º 15 (5 de agosto de 2021): 8934–46. http://dx.doi.org/10.1093/nar/gkab644.
Texto completo da fonteDhar, Surbhi, Ozge Gursoy-Yuzugullu, Ramya Parasuram e Brendan D. Price. "The tale of a tail: histone H4 acetylation and the repair of DNA breaks". Philosophical Transactions of the Royal Society B: Biological Sciences 372, n.º 1731 (28 de agosto de 2017): 20160284. http://dx.doi.org/10.1098/rstb.2016.0284.
Texto completo da fonteUbbink, M., X. S. Gong, J. C. Gray e D. S. Bendall. "Protein:protein interactions studied by NMR: does cytochrome c bind to plastocyanin on its acidic patch?" Journal of Inorganic Biochemistry 59, n.º 2-3 (agosto de 1995): 282. http://dx.doi.org/10.1016/0162-0134(95)97385-4.
Texto completo da fonteSubramanian, Vidya, Aprotim Mazumder, Lauren E. Surface, Vincent L. Butty, Paul A. Fields, Allison Alwan, Lillian Torrey et al. "H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation". PLoS Genetics 9, n.º 8 (22 de agosto de 2013): e1003725. http://dx.doi.org/10.1371/journal.pgen.1003725.
Texto completo da fonteShaytan, Alexey, Grigoriy A. Armeev, Pavel D. Oleinikov, Nikita A. Motorin, Lavprit Singh-Palchevskaya, Anastasiia L. Sivkina, Pavel G. Feskin et al. "Interactions of nucleosomes with acidic patch binding peptides: Combining structural analysis, MD simulations, and experiments". Biophysical Journal 123, n.º 3 (fevereiro de 2024): 3a. http://dx.doi.org/10.1016/j.bpj.2023.11.150.
Texto completo da fonteWu, Yinsheng, Haoshen Xue, Fei Liu, Xinyue Wang, Ling Chen, Maoshen Chen, Bor-Sen Chiou, Xinghu Zhou, Xue Jiao e Fang Zhong. "Improving stability of phycocyanin under acidic conditions by surface patch binding induced complexation with gelatin". Food Hydrocolloids 161 (abril de 2025): 110876. http://dx.doi.org/10.1016/j.foodhyd.2024.110876.
Texto completo da fonteEvlanenkov, Konstantin K., Maxim V. Nikolaev, Natalia N. Potapieva, Konstantin V. Bolshakov e Denis B. Tikhonov. "Probing the Proton-Gated ASIC Channels Using Tetraalkylammonium Ions". Biomolecules 13, n.º 11 (8 de novembro de 2023): 1631. http://dx.doi.org/10.3390/biom13111631.
Texto completo da fonteMerchant, Mark, Felix F. Vajdos, Mark Ultsch, Henry R. Maun, Ulrich Wendt, Jennifer Cannon, William Desmarais, Robert A. Lazarus, Abraham M. de Vos e Frederic J. de Sauvage. "Suppressor of Fused Regulates Gli Activity through a Dual Binding Mechanism". Molecular and Cellular Biology 24, n.º 19 (1 de outubro de 2004): 8627–41. http://dx.doi.org/10.1128/mcb.24.19.8627-8641.2004.
Texto completo da fonteGuce, Abigail, Sarah Mortimer, Elizabeth Mellins, Lars Karlsson e Lawrence Stern. "Structural basis of HLA-DO inhibition of HLA-DM catalyzed peptide exchange on MHC class II (100.53)". Journal of Immunology 186, n.º 1_Supplement (1 de abril de 2011): 100.53. http://dx.doi.org/10.4049/jimmunol.186.supp.100.53.
Texto completo da fonteCucinotta, Christine E., Alexandria N. Young, Kristin M. Klucevsek e Karen M. Arndt. "The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae". PLOS Genetics 11, n.º 8 (4 de agosto de 2015): e1005420. http://dx.doi.org/10.1371/journal.pgen.1005420.
Texto completo da fonteValencia, Alfredo M., Clayton K. Collings, Hai T. Dao, Roodolph St. Pierre, Yung-Chih Cheng, Junwei Huang, Zhen-Yu Sun et al. "Recurrent SMARCB1 Mutations Reveal a Nucleosome Acidic Patch Interaction Site That Potentiates mSWI/SNF Complex Chromatin Remodeling". Cell 179, n.º 6 (novembro de 2019): 1342–56. http://dx.doi.org/10.1016/j.cell.2019.10.044.
Texto completo da fonteLeung, Justin W., Poonam Agarwal, Marella D. Canny, Fade Gong, Aaron D. Robison, Ilya J. Finkelstein, Daniel Durocher e Kyle M. Miller. "Nucleosome Acidic Patch Promotes RNF168- and RING1B/BMI1-Dependent H2AX and H2A Ubiquitination and DNA Damage Signaling". PLoS Genetics 10, n.º 3 (6 de março de 2014): e1004178. http://dx.doi.org/10.1371/journal.pgen.1004178.
Texto completo da fonteYu, Y., N. N. Jiménez-Vargas, C. D. Lopez Lopez, J. O. Jaramillo Polanco, N. W. Bunnett e S. Vanner. "A213 A NOVEL PH-SENSITIVE OPIOID ANALGESIC THAT IS SELECTIVELY ACTIVATED IN ACIDIC INFLAMMATORY ENVIRONMENTS". Journal of the Canadian Association of Gastroenterology 3, Supplement_1 (fevereiro de 2020): 85–87. http://dx.doi.org/10.1093/jcag/gwz047.212.
Texto completo da fonteHodges, Amelia J., Lisa M. Gloss e John J. Wyrick. "Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in Saccharomyces cerevisiae". Genetics 206, n.º 3 (3 de maio de 2017): 1339–48. http://dx.doi.org/10.1534/genetics.117.201939.
Texto completo da fonteChen, Qinming, Renliang Yang, Nikolay Korolev, Chuan Fa Liu e Lars Nordenskiöld. "Regulation of Nucleosome Stacking and Chromatin Compaction by the Histone H4 N-Terminal Tail–H2A Acidic Patch Interaction". Journal of Molecular Biology 429, n.º 13 (junho de 2017): 2075–92. http://dx.doi.org/10.1016/j.jmb.2017.03.016.
Texto completo da fonteYakushiji, Fumika, Aoi Ishikawa, Akira Katsuyama e Satoshi Ichikawa. "Development of cyclic peptide derivatives from the N-terminal region of LANA for targeting the nucleosome acidic patch". Bioorganic & Medicinal Chemistry Letters 30, n.º 2 (janeiro de 2020): 126839. http://dx.doi.org/10.1016/j.bmcl.2019.126839.
Texto completo da fontePathak, Prasad, e Stephen Whalen. "Using Geospatial Techniques to Analyze Landscape Factors Controlling Ionic Composition of Arctic Lakes, Toolik Lake Region, Alaska". International Journal of Applied Geospatial Research 3, n.º 3 (julho de 2012): 37–57. http://dx.doi.org/10.4018/jagr.2012070103.
Texto completo da fonteMiller, Gregory J., Stanley D. Dunn e Eric H. Ball. "Interaction of the N- and C-terminal Domains of Vinculin". Journal of Biological Chemistry 276, n.º 15 (21 de dezembro de 2000): 11729–34. http://dx.doi.org/10.1074/jbc.m008646200.
Texto completo da fonteGeorgiev, Yordan N., Manol H. Ognyanov, Hiroaki Kiyohara, Tsvetelina G. Batsalova, Balik M. Dzhambazov, Milan Ciz, Petko N. Denev et al. "Acidic polysaccharide complexes from purslane, silver linden and lavender stimulate Peyer’s patch immune cells through innate and adaptive mechanisms". International Journal of Biological Macromolecules 105 (dezembro de 2017): 730–40. http://dx.doi.org/10.1016/j.ijbiomac.2017.07.095.
Texto completo da fonteAl Hanbali, Othman A., Haji Muhammad Shoaib Khan, Muhammad Sarfraz, Mosab Arafat, Shakeel Ijaz e Abdul Hameed. "Transdermal patches: Design and current approaches to painless drug delivery". Acta Pharmaceutica 69, n.º 2 (1 de junho de 2019): 197–215. http://dx.doi.org/10.2478/acph-2019-0016.
Texto completo da fonteMarcianò, G., e D. T. Huang. "Structure of the human histone chaperone FACT Spt16 N-terminal domain". Acta Crystallographica Section F Structural Biology Communications 72, n.º 2 (22 de janeiro de 2016): 121–28. http://dx.doi.org/10.1107/s2053230x15024565.
Texto completo da fonteBociąg, Katarzyna. "The impact of acidic organie Matter on the diversity of underwater vegetation in soft water lakes". Acta Societatis Botanicorum Poloniae 72, n.º 3 (2011): 221–29. http://dx.doi.org/10.5586/asbp.2003.029.
Texto completo da fonteHuang, Ren-Qi, e Glenn H. Dillon. "Effect of Extracellular pH on GABA-Activated Current in Rat Recombinant Receptors and Thin Hypothalamic Slices". Journal of Neurophysiology 82, n.º 3 (1 de setembro de 1999): 1233–43. http://dx.doi.org/10.1152/jn.1999.82.3.1233.
Texto completo da fonteZeilhofer, H. U., D. Swandulla, P. W. Reeh e M. Kress. "Ca2+ permeability of the sustained proton-induced cation current in adult rat dorsal root ganglion neurons". Journal of Neurophysiology 76, n.º 5 (1 de novembro de 1996): 2834–40. http://dx.doi.org/10.1152/jn.1996.76.5.2834.
Texto completo da fonteLo, Stanley M., Kyle A. McElroy e Nicole J. Francis. "Chromatin Modification by PSC Occurs at One PSC per Nucleosome and Does Not Require the Acidic Patch of Histone H2A". PLoS ONE 7, n.º 10 (11 de outubro de 2012): e47162. http://dx.doi.org/10.1371/journal.pone.0047162.
Texto completo da fonteMcNitt, Dudley H., Soo Jeon Choi, Douglas R. Keene, Livingston Van De Water, Flavia Squeglia, Rita Berisio e Slawomir Lukomski. "Surface-exposed loops and an acidic patch in the Scl1 protein of group AStreptococcusenable Scl1 binding to wound-associated fibronectin". Journal of Biological Chemistry 293, n.º 20 (2 de abril de 2018): 7796–810. http://dx.doi.org/10.1074/jbc.ra118.002250.
Texto completo da fonteYe, Youpi, Hao Wu, Kangjing Chen, Cedric R. Clapier, Naveen Verma, Wenhao Zhang, Haiteng Deng, Bradley R. Cairns, Ning Gao e Zhucheng Chen. "Structure of the RSC complex bound to the nucleosome". Science 366, n.º 6467 (31 de outubro de 2019): 838–43. http://dx.doi.org/10.1126/science.aay0033.
Texto completo da fonte