Siga este link para ver outros tipos de publicações sobre o tema: Abelian structures.

Artigos de revistas sobre o tema "Abelian structures"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Abelian structures".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Lu, Jianwei, e Liguo He. "On the Structures of Abelianπ-Regular Rings". International Journal of Mathematics and Mathematical Sciences 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/842313.

Texto completo da fonte
Resumo:
Assume thatRis an Abelian ring. In this paper, we characterize the structure ofRwheneverRisπ-regular. It is also proved that an Abelianπ-regular ring is isomorphic to the subdirect sum of some metadivision rings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Clarke, Francis. "Counting abelian group structures". Proceedings of the American Mathematical Society 134, n.º 10 (10 de abril de 2006): 2795–99. http://dx.doi.org/10.1090/s0002-9939-06-08396-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

CONSOLE, S., A. FINO e Y. S. POON. "STABILITY OF ABELIAN COMPLEX STRUCTURES". International Journal of Mathematics 17, n.º 04 (abril de 2006): 401–16. http://dx.doi.org/10.1142/s0129167x06003576.

Texto completo da fonte
Resumo:
Let M = Γ\G be a nilmanifold endowed with an invariant complex structure. We prove that Kuranishi deformations of abelian complex structures are all invariant complex structures, generalizing a result in [7] for 2-step nilmanifolds. We characterize small deformations that remain abelian. As an application, we observe that at real dimension six, the deformation process of abelian complex structures is stable within the class of nilpotent complex structures. We give an example to show that this property does not hold in higher dimension.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Poon, Yat Sun. "Abelian Complex Structures and Generalizations". Complex Manifolds 8, n.º 1 (1 de janeiro de 2021): 247–66. http://dx.doi.org/10.1515/coma-2020-0117.

Texto completo da fonte
Resumo:
Abstract After a review on the development of deformation theory of abelian complex structures from both the classical and generalized sense, we propose the concept of semi-abelian generalized complex structure. We present some observations on such structure and illustrate this new concept with a variety of examples.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Tang, Guoliang. "Abelian model structures on comma categories". Ukrains’kyi Matematychnyi Zhurnal 76, n.º 3 (25 de março de 2024): 373–81. http://dx.doi.org/10.3842/umzh.v76i3.7289.

Texto completo da fonte
Resumo:
UDC 512.64 Let A and B be bicomplete Abelian categories, which both have enough projectives and injectives and let T : A → B be a right exact functor. Under some mild conditions, we show that hereditary Abelian model structures on A and B can be amalgamated into a global hereditary Abelian model structure on the comma category ( T ↓ B ) . As an application of this result, we give an explicit description of a subcategory that consists of all trivial objects of the Gorenstein flat model structure on the category of modules over a triangular matrix ring.
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Goswami, Amartya. "Salamander lemma for non-abelian group-like structures". Journal of Algebra and Its Applications 19, n.º 02 (15 de março de 2019): 2050022. http://dx.doi.org/10.1142/s021949882050022x.

Texto completo da fonte
Resumo:
It is well known that the classical diagram lemmas of homological algebra for abelian groups can be generalized to non-abelian group-like structures, such as groups, rings, algebras, loops, etc. In this paper, we establish such a generalization of the “salamander lemma” due to G. M. Bergman, in a self-dual axiomatic context (developed originally by Z. Janelidze), which applies to all usual non-abelian group-like structures and also covers axiomatic contexts such as semi-abelian categories in the sense of G. Janelidze, L. Márki and W. Tholen and exact categories in the sense of M. Grandis.
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yu, Chia-Fu. "Abelian varieties over finite fields as basic abelian varieties". Forum Mathematicum 29, n.º 2 (1 de março de 2017): 489–500. http://dx.doi.org/10.1515/forum-2014-0141.

Texto completo da fonte
Resumo:
AbstractIn this note we show that any basic abelian variety with additional structures over an arbitrary algebraically closed field of characteristic ${p>0}$ is isogenous to another one defined over a finite field. We also show that the category of abelian varieties over finite fields up to isogeny can be embedded into the category of basic abelian varieties with suitable endomorphism structures. Using this connection, we derive a new mass formula for a finite orbit of polarized abelian surfaces over a finite field.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Fokina, E., J. F. Knight, A. Melnikov, S. M. Quinn e C. Safranski. "Classes of Ulm type and coding rank-homogeneous trees in other structures". Journal of Symbolic Logic 76, n.º 3 (setembro de 2011): 846–69. http://dx.doi.org/10.2178/jsl/1309952523.

Texto completo da fonte
Resumo:
AbstractThe first main result isolates some conditions which fail for the class of graphs and hold for the class of Abelianp-groups, the class of Abelian torsion groups, and the special class of “rank-homogeneous” trees. We consider these conditions as a possible definition of what it means for a class of structures to have “Ulm type”. The result says that there can be no Turing computable embedding of a class not of Ulm type into one of Ulm type. We apply this result to show that there is no Turing computable embedding of the class of graphs into the class of “rank-homogeneous” trees. The second main result says that there is a Turing computable embedding of the class of rank-homogeneous trees into the class of torsion-free Abelian groups. The third main result says that there is a “rank-preserving” Turing computable embedding of the class of rank-homogeneous trees into the class of Boolean algebras. Using this result, we show that there is a computable Boolean algebra of Scott rank.
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Remm, Elisabeth, e Michel Goze. "Affine structures on abelian Lie groups". Linear Algebra and its Applications 360 (fevereiro de 2003): 215–30. http://dx.doi.org/10.1016/s0024-3795(02)00452-4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Yu, Chia-Fu. "Lifting abelian varieties with additional structures". Mathematische Zeitschrift 242, n.º 3 (1 de abril de 2002): 427–41. http://dx.doi.org/10.1007/s002090100350.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Brasch, Hans-J�rgen. "Lifting levelD-structures of abelian varieties". Archiv der Mathematik 60, n.º 6 (junho de 1993): 553–62. http://dx.doi.org/10.1007/bf01236082.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Bojowald, Martin. "Abelianized Structures in Spherically Symmetric Hypersurface Deformations". Universe 8, n.º 3 (15 de março de 2022): 184. http://dx.doi.org/10.3390/universe8030184.

Texto completo da fonte
Resumo:
In canonical gravity, general covariance is implemented by hypersurface-deformation symmetries on thephase space. The different versions of hypersurface deformations required for full covariance have complicated interplays with one another, governed by non-Abelian brackets with structure functions. For spherically symmetric space-times, it is possible to identify a certain Abelian substructure within general hypersurface deformations, which suggests a simplified realization as a Lie algebra. The generators of this substructure can be quantized more easily than full hypersurface deformations, but the symmetries they generate do not directly correspond to hypersurface deformations. The availability of consistent quantizations therefore does not guarantee general covariance or a meaningful quantum notion thereof. In addition to placing the Abelian substructure within the full context of spherically symmetric hypersurface deformation, this paper points out several subtleties relevant for attempted applications in quantized space-time structures. In particular, it follows that recent constructions by Gambini, Olmedo, and Pullin in an Abelianized setting fail to address the covariance crisis of loop quantum gravity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Hrushovski, Ehud, e James Loveys. "Strongly and co-strongly minimal abelian structures". Journal of Symbolic Logic 75, n.º 2 (junho de 2010): 442–58. http://dx.doi.org/10.2178/jsl/1268917489.

Texto completo da fonte
Resumo:
AbstractWe give several characterizations of weakly minimal abelian structures. In two special cases, dual in a sense to be made explicit below, we give precise structure theorems:1. when the only finite 0-definable subgroup is {0}, or equivalently 0 is the only algebraic element (the co-strongly minimal case);2. when the theory of the structure is strongly minimal.In the first case, we identify the abelian structure as a “near-subspace” A of a vector space V over a division ring D with its induced structure, with possibly some collection of distinguished subgroups of A of finite index in A and (up to acl(∅)) no further structure. In the second, the structure is that of V/A for a vector space and near-subspace as above, with the only further possible structure some collection of distinguished points. Here a near-subspace of V is a subgroup A such that for any nonzero d ∈ D. the index of A ∩ dA, in A is finite. We also show that any weakly minimal abelian structure is a reduct of a weakly minimal module.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Dalezios, Georgios. "Abelian model structures on categories of quiver representations". Journal of Algebra and Its Applications 19, n.º 10 (29 de outubro de 2019): 2050195. http://dx.doi.org/10.1142/s0219498820501959.

Texto completo da fonte
Resumo:
Let [Formula: see text] be an abelian model category (in the sense of Hovey). For a large class of quivers, we describe associated abelian model structures on categories of quiver representations with values in [Formula: see text]. This is based on recent work of Holm and Jørgensen on cotorsion pairs in categories of quiver representations. An application on Ding projective and Ding injective representations of quivers over Ding–Chen rings is given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Paradiso, Fabio. "Locally conformally balanced metrics on almost abelian Lie algebras". Complex Manifolds 8, n.º 1 (1 de janeiro de 2021): 196–207. http://dx.doi.org/10.1515/coma-2020-0111.

Texto completo da fonte
Resumo:
Abstract We study locally conformally balanced metrics on almost abelian Lie algebras, namely solvable Lie algebras admitting an abelian ideal of codimension one, providing characterizations in every dimension. Moreover, we classify six-dimensional almost abelian Lie algebras admitting locally conformally balanced metrics and study some compatibility results between different types of special Hermitian metrics on almost abelian Lie groups and their compact quotients. We end by classifying almost abelian Lie algebras admitting locally conformally hyperkähler structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Benoist, Franck, e Françoise Delon. "Questions de corps de définition pour les variétés abéliennes en caractéristique positive". Journal of the Institute of Mathematics of Jussieu 7, n.º 4 (outubro de 2008): 623–39. http://dx.doi.org/10.1017/s1474748008000145.

Texto completo da fonte
Resumo:
AbstractDichotomies in various conjectures from algebraic geometry are in fact occurrences of the dichotomy among Zariski structures. This is what Hrushovski showed and which enabled him to solve, positively, the geometric Mordell–Lang conjecture in positive characteristic. Are we able now to avoid this use of Zariski structures? Pillay and Ziegler have given a direct proof that works for semi-abelian varieties they called ‘very thin’, which include the ordinary abelian varieties. But it does not apply in all generality: we describe here an abelian variety which is not very thin. More generally, we consider from a model-theoretical point of view several questions about the fields of definition of semi-abelian varieties.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

GIAVARINI, G., e E. ONOFRI. "VECTOR COHERENT STATES AND NON-ABELIAN GAUGE STRUCTURES IN QUANTUM MECHANICS". International Journal of Modern Physics A 05, n.º 22 (20 de novembro de 1990): 4311–31. http://dx.doi.org/10.1142/s0217751x9000180x.

Texto completo da fonte
Resumo:
We set the general formalism for calculating Berry's phase in quantum systems with Hamiltonian belonging to the algebra of a semisimple Lie group of any rank in the framework of generalized coherent states. Within this approach the geometric properties of Berry's connection are also studied, both in the Abelian and non-Abelian cases. In particular we call attention to the non-Abelian case where we make use of a vectorial generalization of coherent states. In this respect a thorough and self-contained exposition of the formalism of vector coherent states is given. The specific examples of the groups SU(3) and Sp(2) are worked out in detail.
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

WANG, JUNFU, LI HUANHUAN e ZHAOYONG HUANG. "Applications of exact structures in abelian categories". Publicationes Mathematicae Debrecen 88, n.º 3-4 (1 de abril de 2016): 269–86. http://dx.doi.org/10.5486/pmd.2016.7220.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Bajo, Ignacio, e Saïd Benayadi. "Abelian para-Kähler structures on Lie algebras". Differential Geometry and its Applications 29, n.º 2 (março de 2011): 160–73. http://dx.doi.org/10.1016/j.difgeo.2011.02.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Garbagnati, Alice, e Yulieth Prieto-Montañez. "Generalized Shioda–Inose structures of order 3". Advances in Geometry 24, n.º 2 (1 de abril de 2024): 183–207. http://dx.doi.org/10.1515/advgeom-2024-0005.

Texto completo da fonte
Resumo:
Abstract A Shioda–Inose structure is a geometric construction which associates to an Abelian surface a projective K3 surface in such a way that their transcendental lattices are isometric. This geometric construction was described by Morrison by considering special symplectic involutions on the K3 surfaces. After Morrison several authors provided explicit examples. The aim of this paper is to generalize Morrison’s results and some of the known examples to an analogous geometric construction involving not involutions, but order 3 automorphisms. Therefore, we define generalized Shioda–Inose structures of order 3, we identify the K3 surfaces and the Abelian surfaces which appear in these structures and we provide explicit examples.
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Mikaelian, Vahagn H. "Subvariety structures in certain product varieties of groups". Journal of Group Theory 21, n.º 5 (1 de setembro de 2018): 865–84. http://dx.doi.org/10.1515/jgth-2018-0017.

Texto completo da fonte
Resumo:
Abstract We classify certain cases when the wreath products of distinct pairs of groups generate the same variety. This allows us to investigate the subvarieties of some nilpotent-by-abelian product varieties {{\mathfrak{U}}{\mathfrak{V}}} with the help of wreath products of groups. In particular, using wreath products, we find such subvarieties in nilpotent-by-abelian {{\mathfrak{U}}{\mathfrak{V}}} , which have the same nilpotency class, the same length of solubility, and the same exponent, but which still are distinct subvarieties. The classification we obtain strengthens our recent work on varieties generated by wreath products.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Simon, Pierre. "On dp-minimal ordered structures". Journal of Symbolic Logic 76, n.º 2 (junho de 2011): 448–60. http://dx.doi.org/10.2178/jsl/1305810758.

Texto completo da fonte
Resumo:
AbstractWe show basic facts about dp-minimal ordered structures. The main results are: dp-minimal groups are abelian-by-finite-exponent, in a divisible ordered dp-minimal group, any infinite set has nonempty interior, and any theory of pure tree is dp-minimal.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Huczynska, Sophie, Christopher Jefferson e Silvia Nepšinská. "Strong external difference families in abelian and non-abelian groups". Cryptography and Communications 13, n.º 2 (8 de fevereiro de 2021): 331–41. http://dx.doi.org/10.1007/s12095-021-00473-3.

Texto completo da fonte
Resumo:
AbstractStrong external difference families (SEDFs) have applications to cryptography and are rich combinatorial structures in their own right. We extend the definition of SEDF from abelian groups to all finite groups, and introduce the concept of equivalence. We prove new recursive constructions for SEDFs and generalized SEDFs (GSEDFs) in cyclic groups, and present the first family of non-abelian SEDFs. We prove there exist at least two non-equivalent (k2 + 1,2,k,1)-SEDFs for every k > 2, and begin the task of enumerating SEDFs, via a computational approach which yields complete results for all groups up to order 24.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

SAYGILI, K. "TOPOLOGICALLY MASSIVE ABELIAN GAUGE THEORY". International Journal of Modern Physics A 23, n.º 13 (20 de maio de 2008): 2015–35. http://dx.doi.org/10.1142/s0217751x08039840.

Texto completo da fonte
Resumo:
We discuss three mathematical structures which arise in topologically massive Abelian gauge theory. First, the Euclidean topologically massive Abelian gauge theory defines a contact structure on a manifold. We briefly discuss three solutions and the related contact structures on the flat 3-torus, the AdS space, the 3-sphere which respectively correspond to Bianchi type I, VIII, IX spaces. We also present solutions on Bianchi type II, VI and VII spaces. Secondly, we discuss a family of complex (anti-)self-dual solutions of the Euclidean theory in Cartesian coordinates on [Formula: see text] which are given by (anti)holomorpic functions. The orthogonality relation of contact structures which are determined by the real parts of these complex solutions separates them into two classes: the self-dual and the anti-self-dual solutions. Thirdly, we apply the curl transformation to this theory. An arbitrary solution is given by a vector tangent to a sphere whose radius is determined by the topological mass in transform space. Meanwhile a gauge transformation corresponds to a vector normal to this sphere. We discuss the quantization of topological mass in an example.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Abdulali, Salman. "Hodge Structures on Abelian Varieties of Type III". Annals of Mathematics 155, n.º 3 (maio de 2002): 915. http://dx.doi.org/10.2307/3062136.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Bajo, Ignacio, e Esperanza Sanmartín. "Pseudo-Kähler Lie algebras with Abelian complex structures". Journal of Physics A: Mathematical and Theoretical 45, n.º 46 (30 de outubro de 2012): 465205. http://dx.doi.org/10.1088/1751-8113/45/46/465205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Abramovich, Dan, e Anthony Várilly-Alvarado. "Level structures on abelian varieties and Vojta’s conjecture". Compositio Mathematica 153, n.º 2 (fevereiro de 2017): 373–94. http://dx.doi.org/10.1112/s0010437x16008253.

Texto completo da fonte
Resumo:
Assuming Vojta’s conjecture, and building on recent work of the authors, we prove that, for a fixed number field $K$ and a positive integer $g$, there is an integer $m_{0}$ such that for any $m>m_{0}$ there is no principally polarized abelian variety $A/K$ of dimension $g$ with full level-$m$ structure. To this end, we develop a version of Vojta’s conjecture for Deligne–Mumford stacks, which we deduce from Vojta’s conjecture for schemes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

ANDRADA, ADRIÁN, e RAQUEL VILLACAMPA. "ABELIAN BALANCED HERMITIAN STRUCTURES ON UNIMODULAR LIE ALGEBRAS". Transformation Groups 21, n.º 4 (25 de novembro de 2015): 903–27. http://dx.doi.org/10.1007/s00031-015-9352-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Abdulali, Salman. "Hodge structures on abelian varieties of type IV". Mathematische Zeitschrift 246, n.º 1-2 (1 de janeiro de 2004): 203–12. http://dx.doi.org/10.1007/s00209-003-0595-y.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Gavrilovich, Misha. "Covers of Abelian varieties as analytic Zariski structures". Annals of Pure and Applied Logic 163, n.º 11 (novembro de 2012): 1524–48. http://dx.doi.org/10.1016/j.apal.2011.12.007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Moreno, Andrés J. "Harmonic G2-structures on almost Abelian Lie groups". Differential Geometry and its Applications 91 (dezembro de 2023): 102060. http://dx.doi.org/10.1016/j.difgeo.2023.102060.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Zhang, Yakun, Guoping Tang e Hong Chen. "On the Structures of K2(ℤ[G]), G a Finite Abelian p-Group". Algebra Colloquium 26, n.º 01 (março de 2019): 105–12. http://dx.doi.org/10.1142/s1005386719000105.

Texto completo da fonte
Resumo:
Let G be a finite abelian p-group, Γ the maximal ℤ-order of ℤ[G]. We prove that the 2-primary torsion subgroups of K2(ℤ[G]) and K2(Γ) are isomorphic when p ≡ 3, 5, 7 (mod 8), and [Formula: see text] is isomorphic to [Formula: see text] when p ≡ 2, 3, 5, 7. As an application, we give the structure of K2(ℤ[G]) for G a cyclic p-group or an elementary abelian p-group.
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

DITO, GIUSEPPE. "ON GENERALIZED ABELIAN DEFORMATIONS". Reviews in Mathematical Physics 11, n.º 06 (julho de 1999): 711–25. http://dx.doi.org/10.1142/s0129055x99000246.

Texto completo da fonte
Resumo:
We study sun-products on ℝn, i.e. generalized Abelian deformations associated with star-products for general Poisson structures on ℝn. We show that their cochains are given by differential operators. As a consequence, the weak triviality of sun-products is established and we show that strong equivalence classes are quite small. When the Poisson structure is linear (i.e. on the dual of a Lie algebra), we show that the differentiability of sun-products implies that covariant starproducts on the dual of any Lie algebra are equivalent each other.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Watase, Yasushige. "Embedding Principle for Rings and Abelian Groups". Formalized Mathematics 31, n.º 1 (1 de setembro de 2023): 143–50. http://dx.doi.org/10.2478/forma-2023-0013.

Texto completo da fonte
Resumo:
Summary The article concerns about formalizing a certain lemma on embedding of algebraic structures in the Mizar system, claiming that if a ring A is embedded in a ring B then there exists a ring C which is isomorphic to B and includes A as a subring. This construction applies to algebraic structures such as Abelian groups and rings.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Di Nola, Antonio, Giacomo Lenzi, Gaetano Vitale e Roberto Giuntini. "Expanding Lattice Ordered Abelian Groups to Riesz Spaces". Mathematica Slovaca 72, n.º 1 (1 de fevereiro de 2022): 1–10. http://dx.doi.org/10.1515/ms-2022-0001.

Texto completo da fonte
Resumo:
Abstract First we give a necessary and sufficient condition for an abelian lattice ordered group to admit an expansion to a Riesz space (or vector lattice). Then we construct a totally ordered abelian group with two non-isomorphic Riesz space structures, thus improving a previous paper where the example was a non-totally ordered lattice ordered abelian group. This answers a question raised by Conrad in 1975. We give also a partial solution to another problem considered in the same paper. Finally, we apply our results to MV-algebras and Riesz MV-algebras.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Lenzi, Giacomo. "On the Riesz structures of a lattice ordered abelian group". Mathematica Slovaca 69, n.º 6 (18 de dezembro de 2019): 1237–44. http://dx.doi.org/10.1515/ms-2017-0304.

Texto completo da fonte
Resumo:
Abstract A Riesz structure on a lattice ordered abelian group G is a real vector space structure where the product of a positive element of G and a positive real is positive. In this paper we show that for every cardinal k there is a totally ordered abelian group with at least k Riesz structures, all of them isomorphic. Moreover two Riesz structures on the same totally ordered group are partially isomorphic in the sense of model theory. Further, as a main result, we build two nonisomorphic Riesz structures on the same l-group with strong unit. This gives a solution to a problem posed by Conrad in 1975. Finally we apply the main result to MV-algebras and Riesz MV-algebras.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Ceballos, Manuel, Juan Núñez e Ángel F. Tenorio. "Abelian subalgebras on Lie algebras". Communications in Contemporary Mathematics 17, n.º 04 (22 de junho de 2015): 1550050. http://dx.doi.org/10.1142/s0219199715500509.

Texto completo da fonte
Resumo:
Abelian subalgebras play an important role in the study of Lie algebras and their properties and structures. In this paper, the historical evolution of this concept is shown, analyzing the current status for the research on this topic. So, the main results obtained from previous years are indicated and commented here. Additionally, a list of some related open problems is also given.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Koch, Alan. "Abelian maps, bi-skew braces, and opposite pairs of Hopf-Galois structures". Proceedings of the American Mathematical Society, Series B 8, n.º 16 (9 de junho de 2021): 189–203. http://dx.doi.org/10.1090/bproc/87.

Texto completo da fonte
Resumo:
Let G G be a finite nonabelian group, and let ψ : G → G \psi :G\to G be a homomorphism with abelian image. We show how ψ \psi gives rise to two Hopf-Galois structures on a Galois extension L / K L/K with Galois group (isomorphic to) G G ; one of these structures generalizes the construction given by a “fixed point free abelian endomorphism” introduced by Childs in 2013. We construct the skew left brace corresponding to each of the two Hopf-Galois structures above. We will show that one of the skew left braces is in fact a bi-skew brace, allowing us to obtain four set-theoretic solutions to the Yang-Baxter equation as well as a pair of Hopf-Galois structures on a (potentially) different finite Galois extension.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Feigelstock, Shalom. "Groups Admitting only Finitely Many Nilpotent Ring Structures". Canadian Mathematical Bulletin 29, n.º 2 (1 de junho de 1986): 197–203. http://dx.doi.org/10.4153/cmb-1986-032-2.

Texto completo da fonte
Resumo:
AbstractThe abelian groups which are the additive groups of only finitely many non-isomorphic (associative) nilpotent rings are studied. Progress is made toward a complete classification of these groups. In the torsion free case, the actual number of non-isomorphic nilpotent rings these groups support is obtained.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Rump, Wolfgang. "Quasi-linear Cycle Sets and the Retraction Problem for Set-theoretic Solutions of the Quantum Yang-Baxter Equation". Algebra Colloquium 23, n.º 01 (6 de janeiro de 2016): 149–66. http://dx.doi.org/10.1142/s1005386716000183.

Texto completo da fonte
Resumo:
Cycle sets were introduced to reduce non-degenerate unitary Yang-Baxter maps to an algebraic system with a single binary operation. Every finite cycle set extends uniquely to a finite cycle set with a compatible abelian group structure. Etingof et al. introduced affine Yang-Baxter maps. These are equivalent to cycle sets with a specific abelian group structure. Abelian group structures have also been essential to get partial results for the still unsolved retraction problem. We introduce two new classes of cycle sets with an underlying abelian group structure and show that they can be transformed into each other while keeping the group structure fixed. This leads to a proper extension of the retractibility conjecture and new evidence for its truth.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

BAI, CHENGMING. "A FURTHER STUDY ON NON-ABELIAN PHASE SPACES: LEFT-SYMMETRIC ALGEBRAIC APPROACH AND RELATED GEOMETRY". Reviews in Mathematical Physics 18, n.º 05 (junho de 2006): 545–64. http://dx.doi.org/10.1142/s0129055x06002711.

Texto completo da fonte
Resumo:
The notion of non-abelian phase space of a Lie algebra was first formulated and then discussed by Kuperschmidt. In this paper, we further study the non-abelian phase spaces in terms of left-symmetric algebras. We interpret the natural appearance of left-symmetric algebras from the intrinsic algebraic properties and the close relations with the classical Yang–Baxter equation. Furthermore, using the theory of left-symmetric algebras, we study some interesting geometric structures related to phase spaces. Moreover, we also discuss the generalized phase spaces with certain non-trivial algebraic structures on the dual spaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

ARNAUDON, D., L. FRAPPAT, J. AVAN e M. ROSSI. "DEFORMED DOUBLE YANGIAN STRUCTURES". Reviews in Mathematical Physics 12, n.º 07 (julho de 2000): 945–63. http://dx.doi.org/10.1142/s0129055x00000290.

Texto completo da fonte
Resumo:
Scaling limits at q → 1 of the elliptic vertex algebras [Formula: see text] are defined for any N, extending the previously known case of N = 2. They realise deformed, centrally extended double Yangian structures [Formula: see text]. As in the quantum affine algebras [Formula: see text], and quantum elliptic affine algebras [Formula: see text], these algebras contain subalgebras at critical values of the central charge c = -N -Mr (M integer, 2r = ln p/ ln q), which become Abelian when c = -N or 2r = Nh for h integer. Poisson structures and quantum exchange relations are derived for their abstract generators.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Baguis, P., e T. Stavracou. "Normal Lie subsupergroups and non-abelian supercircles". International Journal of Mathematics and Mathematical Sciences 30, n.º 10 (2002): 581–91. http://dx.doi.org/10.1155/s0161171202012395.

Texto completo da fonte
Resumo:
We propose and study an appropriate analog of normal Lie subgroups in the supergeometrical context. We prove that the ringed space obtained taking the quotient of a Lie supergroup by a normal Lie subsupergroup, is still a Lie supergroup. We show how one can construct Lie supergroup structures over topologically nontrivial Lie groups and how the previous property of normal Lie subsupergroups can be used, in order to explicitly obtain the coproduct, counit, and antipode of these structures. We illustrate the general theory by carrying out the previous constructions over the circle, which leads to non-abelian super generalizations of the circle.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Gao, Su. "On automorphism groups of countable structures". Journal of Symbolic Logic 63, n.º 3 (setembro de 1998): 891–96. http://dx.doi.org/10.2307/2586718.

Texto completo da fonte
Resumo:
AbstractStrengthening a theorem of D. W. Kueker, this paper completely charaterizes which countable structures do not admit uncountable Lω1ω-elementarily equivalent models. In particular, it is shown that if the automorphism group of a countable structure M is abelian, or even just solvable, then there is no uncountable model of the Scott sentence of M. These results arise as part of a study of Polish groups with compatible left-invariant complete metrics.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Zhou, Kun, e Gongxiang Liu. "On the quasitriangular structures of abelian extensions of ℤ2". Communications in Algebra 49, n.º 11 (10 de junho de 2021): 4755–62. http://dx.doi.org/10.1080/00927872.2021.1929274.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Baro, Elías, e Alessandro Berarducci. "Topology of definable abelian groups in o-minimal structures". Bulletin of the London Mathematical Society 44, n.º 3 (17 de novembro de 2011): 473–79. http://dx.doi.org/10.1112/blms/bdr108.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Pérez, Marco A. "Homological dimensions and Abelian model structures on chain complexes". Rocky Mountain Journal of Mathematics 46, n.º 3 (junho de 2016): 951–1010. http://dx.doi.org/10.1216/rmj-2016-46-3-951.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Gerasimov, Anton A., e Samson L. Shatashvili. "On non-abelian structures in open string field theory". Journal of High Energy Physics 2001, n.º 06 (27 de junho de 2001): 066. http://dx.doi.org/10.1088/1126-6708/2001/06/066.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Cvetič, Mirjam, e Paul Langacker. "Implications of Abelian extended gauge structures from string models". Physical Review D 54, n.º 5 (1 de setembro de 1996): 3570–79. http://dx.doi.org/10.1103/physrevd.54.3570.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

MACLAUGHLIN, C., H. PEDERSEN, Y. S. POON e S. SALAMON. "DEFORMATION OF 2-STEP NILMANIFOLDS WITH ABELIAN COMPLEX STRUCTURES". Journal of the London Mathematical Society 73, n.º 01 (fevereiro de 2006): 173–93. http://dx.doi.org/10.1112/s0024610705022519.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia