Artigos de revistas sobre o tema "4D cell culture"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "4D cell culture".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hilderbrand, Amber M., Elisa M. Ovadia, Matthew S. Rehmann, Prathamesh M. Kharkar, Chen Guo e April M. Kloxin. "Biomaterials for 4D stem cell culture". Current Opinion in Solid State and Materials Science 20, n.º 4 (agosto de 2016): 212–24. http://dx.doi.org/10.1016/j.cossms.2016.03.002.
Texto completo da fonteNies, Cordula, Tobias Rubner, Hanna Lorig, Vera Colditz, Helen Seelmann, Andreas Müller e Eric Gottwald. "A Microcavity Array-Based 4D Cell Culture Platform". Bioengineering 6, n.º 2 (31 de maio de 2019): 50. http://dx.doi.org/10.3390/bioengineering6020050.
Texto completo da fonteMiao, Shida, Haitao Cui, Timothy Esworthy, Bhushan Mahadik, Se‐jun Lee, Xuan Zhou, Sung Yun Hann, John P. Fisher e Lijie Grace Zhang. "4D Self‐Morphing Culture Substrate for Modulating Cell Differentiation". Advanced Science 7, n.º 6 (março de 2020): 1902403. http://dx.doi.org/10.1002/advs.201902403.
Texto completo da fonteZheng, Yijun, Mitchell Kim Liong Han, Qiyang Jiang, Bin Li, Jun Feng e Aránzazu del Campo. "4D hydrogel for dynamic cell culture with orthogonal, wavelength-dependent mechanical and biochemical cues". Materials Horizons 7, n.º 1 (2020): 111–16. http://dx.doi.org/10.1039/c9mh00665f.
Texto completo da fonteMiao, Shida, Haitao Cui, Timothy Esworthy, Bhushan Mahadik, Se‐jun Lee, Xuan Zhou, Sung Yun Hann, John P. Fisher e Lijie Grace Zhang. "Programmable Culture Substrates: 4D Self‐Morphing Culture Substrate for Modulating Cell Differentiation (Adv. Sci. 5/2020)". Advanced Science 7, n.º 6 (março de 2020): 2070034. http://dx.doi.org/10.1002/advs.202070034.
Texto completo da fonteYang, Chen, Jeffrey Luo, Marianne Polunas, Nikola Bosnjak, Sy‐Tsong Dean Chueng, Michelle Chadwick, Hatem E. Sabaawy, Shawn A. Chester, Ki‐Bum Lee e Howon Lee. "4D‐Printed Transformable Tube Array for High‐Throughput 3D Cell Culture and Histology". Advanced Materials 32, n.º 40 (31 de agosto de 2020): 2004285. http://dx.doi.org/10.1002/adma.202004285.
Texto completo da fonteSuvannasankha, Attaya, Colin D. Crean, Douglas R. Tompkins, Jesus Delgado-Calle, Teresita M. Bellido, G. David Roodman e John M. Chirgwin. "Regulation of Osteoblast Function in Myeloma Bone Disease By Semaphorin 4D". Blood 128, n.º 22 (2 de dezembro de 2016): 4439. http://dx.doi.org/10.1182/blood.v128.22.4439.4439.
Texto completo da fonteBurgstaller, Gerald, Sarah Vierkotten, Michael Lindner, Melanie Königshoff e Oliver Eickelberg. "Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue". American Journal of Physiology-Lung Cellular and Molecular Physiology 309, n.º 4 (15 de agosto de 2015): L323—L332. http://dx.doi.org/10.1152/ajplung.00061.2015.
Texto completo da fonteAngelats Lobo e Ginestra. "Cell Bioprinting: The 3D-Bioplotter™ Case". Materials 12, n.º 23 (2 de dezembro de 2019): 4005. http://dx.doi.org/10.3390/ma12234005.
Texto completo da fonteGerner, E. W., P. S. Mamont, A. Bernhardt e M. Siat. "Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells". Biochemical Journal 239, n.º 2 (15 de outubro de 1986): 379–86. http://dx.doi.org/10.1042/bj2390379.
Texto completo da fonteDejani, Naiara, Felipe Fortino, Victoria Nino e Alexandra Ivo Medeiros. "‘Efferocytosis of infected apoptotic cells inhibits Th17 differentiation via PGE2-EP4 signaling’". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 133.34. http://dx.doi.org/10.4049/jimmunol.196.supp.133.34.
Texto completo da fonteBatalov, Ivan, Kelly R. Stevens e Cole A. DeForest. "Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels". Proceedings of the National Academy of Sciences 118, n.º 4 (19 de janeiro de 2021): e2014194118. http://dx.doi.org/10.1073/pnas.2014194118.
Texto completo da fonteStrach, Madeleine Cornelia, Nicole Yeung, Hui-Ming Lin, Nabila Ansari, Cherry Koh, Joo-Shik Shin, James Kench et al. "Patient-derived explant model of appendiceal cancer." Journal of Clinical Oncology 40, n.º 16_suppl (1 de junho de 2022): 4160. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.4160.
Texto completo da fonteSukparangsi, W., R. Bootsri, W. Sikeao, S. Karoon e A. Thongphakdee. "181 Establishment of Induced Pluripotent Stem Cells from Fishing Cat and Clouded Leopard Using Integration-Free Method for Wildlife Conservation". Reproduction, Fertility and Development 30, n.º 1 (2018): 230. http://dx.doi.org/10.1071/rdv30n1ab181.
Texto completo da fonteSchöneberg, Johannes, Daphné Dambournet, Tsung-Li Liu, Ryan Forster, Dirk Hockemeyer, Eric Betzig e David G. Drubin. "4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell–derived intestinal organoids". Molecular Biology of the Cell 29, n.º 24 (26 de novembro de 2018): 2959–68. http://dx.doi.org/10.1091/mbc.e18-06-0375.
Texto completo da fonteMUNASINGHE, VARUNI S., D. STARK e J. T. ELLIS. "New advances in thein-vitroculture ofDientamoeba fragilis". Parasitology 139, n.º 7 (16 de fevereiro de 2012): 864–69. http://dx.doi.org/10.1017/s0031182012000145.
Texto completo da fonteGórnicki, Tomasz, Jakub Lambrinow, Afsaneh Golkar-Narenji, Krzysztof Data, Dominika Domagała, Julia Niebora, Maryam Farzaneh et al. "Biomimetic Scaffolds—A Novel Approach to Three Dimensional Cell Culture Techniques for Potential Implementation in Tissue Engineering". Nanomaterials 14, n.º 6 (16 de março de 2024): 531. http://dx.doi.org/10.3390/nano14060531.
Texto completo da fonteLiu, Haiyan, Bo Hu e Yuan Song. "The role of donor memory-like NK cell infusion in allogeneic hematopoietic stem cell transplantation". Journal of Immunology 196, n.º 1_Supplement (1 de maio de 2016): 140.1. http://dx.doi.org/10.4049/jimmunol.196.supp.140.1.
Texto completo da fonteYang, Rui, Boyang Zhang, Yueqi Wang, Yan Zhang, Yansen Zhao, Daozhen Jiang, Lanxin Chen, Bo Tang e Xueming Zhang. "H3K9me3 Levels Affect the Proliferation of Bovine Spermatogonial Stem Cells". International Journal of Molecular Sciences 25, n.º 17 (25 de agosto de 2024): 9215. http://dx.doi.org/10.3390/ijms25179215.
Texto completo da fonteZhang, Zhenhe, Miles Freeman, Yiqiang Zhang, Danny El-Nachef, George Davenport, Allison Williams e W. Robb MacLellan. "Hippo signaling and histone methylation control cardiomyocyte cell cycle re-entry through distinct transcriptional pathways". PLOS ONE 18, n.º 2 (13 de fevereiro de 2023): e0281610. http://dx.doi.org/10.1371/journal.pone.0281610.
Texto completo da fonteDrakul, Marija, Sergej Tomić, Marina Bekić, Dušan Mihajlović, Miloš Vasiljević, Sara Rakočević, Jelena Đokić, Nikola Popović, Dejan Bokonjić e Miodrag Čolić. "Sitagliptin Induces Tolerogenic Human Dendritic Cells". International Journal of Molecular Sciences 24, n.º 23 (27 de novembro de 2023): 16829. http://dx.doi.org/10.3390/ijms242316829.
Texto completo da fonteMunawaroh, Zahrotul, Putri Kemala Sari, Bagas Setiyo Pambudi e Rahmi Faradisya Ekapti. "DEVELOPMENT OF THE ETINTEC STUDENT BOOK (ETHNOSCIENCE-BASED INTERACTIVE TEACHING STUDENT BOOK) AS AN INTERACTIVE LEARNING MEDIA BASED ON THE TYPICAL PONOROGO CULTURE ON ECOLOGY AND BIODIVERSITY MATERIALS". INSECTA: Integrative Science Education and Teaching Activity Journal 3, n.º 2 (30 de novembro de 2022): 158–67. http://dx.doi.org/10.21154/insecta.v3i2.5143.
Texto completo da fonteGuerra, Antonio J., Hernan Lara-Padilla, Matthew L. Becker, Ciro A. Rodriguez e David Dean. "Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants". Current Drug Targets 20, n.º 8 (10 de maio de 2019): 823–38. http://dx.doi.org/10.2174/1389450120666190114122815.
Texto completo da fontePerisse, I. V., G. Almeida-Porada, C. D. Porada, K. L. White e I. A. Polejaeva. "93 A sheep model of sickle cell disease using CRISPR/Cas9 and somatic cell nuclear transfer". Reproduction, Fertility and Development 33, n.º 2 (2021): 154. http://dx.doi.org/10.1071/rdv33n2ab93.
Texto completo da fontePerisse, I. V., G. Almeida-Porada, C. D. Porada, K. L. White e I. A. Polejaeva. "93 A sheep model of sickle cell disease using CRISPR/Cas9 and somatic cell nuclear transfer". Reproduction, Fertility and Development 33, n.º 2 (2021): 154. http://dx.doi.org/10.1071/rdv33n2ab93.
Texto completo da fonteRajzer, Izabella, Anna Kurowska, Jarosław Janusz, Maksymilian Maślanka, Adam Jabłoński, Piotr Szczygieł, Janusz Fabia et al. "Four-Dimensional Printing of β-Tricalcium Phosphate-Modified Shape Memory Polymers for Bone Scaffolds in Osteochondral Regeneration". Materials 18, n.º 2 (11 de janeiro de 2025): 306. https://doi.org/10.3390/ma18020306.
Texto completo da fonteYamaki, T., T. Uede, N. Shijubo e K. Kikuchi. "Functional analysis of mononuclear cells infiltrating into tumors. III. Soluble factors involved in the regulation of T lymphocyte infiltration into tumors." Journal of Immunology 140, n.º 12 (15 de junho de 1988): 4388–96. http://dx.doi.org/10.4049/jimmunol.140.12.4388.
Texto completo da fonteSoper, Brian W., Mark D. Lessard, Travis L. Alley, Jennifer L. Proctor, Anthony J. Mourino e Jane E. Barker. "Treatment of Neurological Dysfunction in MPS VII and Batten Disease by Transplantation of Lentivirally Transduced Neuronal Stem Cells Cultured from Hematopoietic Tissue." Blood 106, n.º 11 (16 de novembro de 2005): 1284. http://dx.doi.org/10.1182/blood.v106.11.1284.1284.
Texto completo da fonteYoshimi, Mayumi, Susumu Goyama, Masahiro Nakagawa, Takashi Asai, Motoshi Ichikawa e Mineo Kurokawa. "Phosphorylation of AML1/Runx1 Is Essential for T Cell Differentiation and Early Hematopoietic Development." Blood 110, n.º 11 (16 de novembro de 2007): 2189. http://dx.doi.org/10.1182/blood.v110.11.2189.2189.
Texto completo da fonteSousa, Ingrid Grazielle, Priscila Keiko Matsumoto Martin, Dulcinéia Martins de Albuquerque, Carolina Lanaro, Ryo Kurita, Yukio Nakamura e Fernando Ferreira Costa. "Knockdown of HNF4A Gene Increases Fetal Hemoglobin Synthesis in Hudep-2". Blood 134, Supplement_1 (13 de novembro de 2019): 968. http://dx.doi.org/10.1182/blood-2019-130920.
Texto completo da fonteLai, Qiao-Ling, Wei-Dong Zheng e Yan Huang. "Regulation role of miR-204 on SIRT1/VEGF in metabolic memory induced by high glucose in human retinal pigment epithelial cells". International Journal of Ophthalmology 17, n.º 7 (18 de julho de 2024): 1232–37. http://dx.doi.org/10.18240/ijo.2024.07.06.
Texto completo da fonteNaeimi Kararoudi, Meisam, Ezgi Elmas, Margaret Lamb, Nitin Chakravarti, Prashant Trikha e Dean Anthony Lee. "Disruption of SOCS3 Promotes the Anti-Cancer Efficacy of Primary NK Cells". Blood 132, Supplement 1 (29 de novembro de 2018): 5687. http://dx.doi.org/10.1182/blood-2018-99-116621.
Texto completo da fonteSmith, Eric L., Sham Mailankody, Arnab Ghosh, Reed Masakayan, Mette Staehr, Terence J. Purdon, Elizabeth Halton et al. "Development and Evaluation of a Human Single Chain Variable Fragment (scFv) Derived Bcma Targeted CAR T Cell Vector Leads to a High Objective Response Rate in Patients with Advanced MM". Blood 130, Suppl_1 (7 de dezembro de 2017): 742. http://dx.doi.org/10.1182/blood.v130.suppl_1.742.742.
Texto completo da fonteNasri, Masoud, Perihan Mir, Benjamin Dannenmann, Diana Amend, Yun Xu, Anna Solovyeva, Sylwia Stefanczyk et al. "A Method to Fluorescently Label the CRISPR/Cas9-gRNA RNP Complexes Enables Enrichment of Clinical-Grade Gene-Edited Primary Hematopoietic Stem Cells and iPSCs". Blood 132, Supplement 1 (29 de novembro de 2018): 1108. http://dx.doi.org/10.1182/blood-2018-99-114844.
Texto completo da fonteAgyekum, Davies G., Zhong Chen, Haiyan Xiao, Megan Yu, Niren Patel, Betty S. Pace e Steffen E. Meiler. "Resveratrol Regulates Fetal Hemoglobin Production by Inhibiting KLF1 and BCL11A in KU812 Cells". Blood 120, n.º 21 (16 de novembro de 2012): 1000. http://dx.doi.org/10.1182/blood.v120.21.1000.1000.
Texto completo da fonteChae, Hee-Don, e Kathleen Sakamoto. "Replication Factor C3 Is a Direct Target Of CREB, Promotes G1/S Transition Of Acute Myeloid Leukemia Cells, and Increases Hematopoietic Stem/Progenitor Cell Self-Renewal". Blood 122, n.º 21 (15 de novembro de 2013): 3754. http://dx.doi.org/10.1182/blood.v122.21.3754.3754.
Texto completo da fonteMartin, Priscila Keiko Matsumoto, Dulcinéia Martins de Albuquerque, Carolina Lanaro, Ryo Kurita, Yukio Nakamura e Fernando F. Costa. "A Single -195 C < G HBG1 Promoter Mediated By CRISPR/Cas9 Genome Editing Induces Fetal Hemoglobin Synthesis in Hudep-2". Blood 132, Supplement 1 (29 de novembro de 2018): 3481. http://dx.doi.org/10.1182/blood-2018-99-118534.
Texto completo da fonteLontos, Konstantinos, Juraj Adamik, Peng Zhang, Quanhong Sun, David Roodman, Attaya Suvannasankha e Deborah Lynn Galson. "Semaphorin 4D to suppress bone formation in multiple myeloma." Journal of Clinical Oncology 35, n.º 15_suppl (20 de maio de 2017): 8039. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.8039.
Texto completo da fonteAung-Htut, May T., Craig S. McIntosh, Kristin A. West, Sue Fletcher e Steve D. Wilton. "In Vitro Validation of Phosphorodiamidate Morpholino Oligomers". Molecules 24, n.º 16 (12 de agosto de 2019): 2922. http://dx.doi.org/10.3390/molecules24162922.
Texto completo da fonteNeeson, Paul J., Alexander James Davenport, Joseph A. Trapani, Michael Kershaw, Ryan Cross, H. Miles Prince, Ricky W. Johnstone, David Ritchie, Phil Darcy e Misty R. Jenkins. "Bigger, Stronger, Faster: Chimeric Antigen Receptor T Cells Are Olympic Killers". Blood 128, n.º 22 (2 de dezembro de 2016): 814. http://dx.doi.org/10.1182/blood.v128.22.814.814.
Texto completo da fonteOseghale, Aluya Richard, Alice Bertaina e Matthew Porteus. "Towards Automated Engineering of Donor-Derived T Lymphocytes into CRISPR/Cas9-Mediated CAR T Cells in a Closed-System". Blood 142, Supplement 1 (28 de novembro de 2023): 4826. http://dx.doi.org/10.1182/blood-2023-189883.
Texto completo da fonteChapoval, Svetlana, EusebuisHenry Nkyimbeng-Takwi, Kathleen Shanks, Elizabeth Smith, Apoorva Iyer, Michael Lipsky, Louis DeTolla e Achsah Keegan. "Neuroimmune semaphorin 4D is necessary for optimal lung allergic inflammatory response (175.16)". Journal of Immunology 188, n.º 1_Supplement (1 de maio de 2012): 175.16. http://dx.doi.org/10.4049/jimmunol.188.supp.175.16.
Texto completo da fonteWang, Yu-li. "Fluorescence microscopy of molecular organization and dynamics in cultured cells". Proceedings, annual meeting, Electron Microscopy Society of America 50, n.º 1 (agosto de 1992): 550–51. http://dx.doi.org/10.1017/s0424820100123155.
Texto completo da fonteNarożna, Maria, Violetta Krajka-Kuźniak, Robert Kleszcz e Wanda Baer-Dubowska. "Indomethacin and Diclofenac Hybrids with Oleanolic Acid Oximes Modulate Key Signaling Pathways in Pancreatic Cancer Cells". International Journal of Molecular Sciences 23, n.º 3 (22 de janeiro de 2022): 1230. http://dx.doi.org/10.3390/ijms23031230.
Texto completo da fonteJi, Kyungmin, George J. Schwenkel, Raymond R. Mattingly, Harini G. Sundararaghavan, Zheng Gang Zhang e Michael Chopp. "A Fibroblast-Derived Secretome Stimulates the Growth and Invasiveness of 3D Plexiform Neurofibroma Spheroids". Cancers 16, n.º 14 (9 de julho de 2024): 2498. http://dx.doi.org/10.3390/cancers16142498.
Texto completo da fonteNishide, Masayuki, Satoshi Nojima, Daisuke Ito, Hyota Takamatsu, Shohei Koyama, Sujin Kang, Tetsuya Kimura et al. "Semaphorin 4D inhibits neutrophil activation and is involved in the pathogenesis of neutrophil-mediated autoimmune vasculitis". Annals of the Rheumatic Diseases 76, n.º 8 (17 de abril de 2017): 1440–48. http://dx.doi.org/10.1136/annrheumdis-2016-210706.
Texto completo da fonteJain, Pramod T., J. Thomas Pento e Robert A. Magarian. "A comparison of the antitumor activity of two triarylcyclopropyl antiestrogens (compounds 4d and 5c) on human breast cancer cells in culture". Anti-Cancer Drugs 5, n.º 4 (agosto de 1994): 429–36. http://dx.doi.org/10.1097/00001813-199408000-00007.
Texto completo da fonteHendrikson, Wilhelmus J., Jeroen Rouwkema, Federico Clementi, Clemens A. van Blitterswijk, Silvia Farè e Lorenzo Moroni. "Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells". Biofabrication 9, n.º 3 (2 de agosto de 2017): 031001. http://dx.doi.org/10.1088/1758-5090/aa8114.
Texto completo da fonteMierke, Claudia Tanja. "Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues". Cells 13, n.º 19 (1 de outubro de 2024): 1638. http://dx.doi.org/10.3390/cells13191638.
Texto completo da fonteSt-Denis, Nicole A., D. Richard Derksen e David W. Litchfield. "Evidence for Regulation of Mitotic Progression through Temporal Phosphorylation and Dephosphorylation of CK2α". Molecular and Cellular Biology 29, n.º 8 (2 de fevereiro de 2009): 2068–81. http://dx.doi.org/10.1128/mcb.01563-08.
Texto completo da fonte