Literatura científica selecionada sobre o tema "4D cell culture"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "4D cell culture".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "4D cell culture"
Hilderbrand, Amber M., Elisa M. Ovadia, Matthew S. Rehmann, Prathamesh M. Kharkar, Chen Guo e April M. Kloxin. "Biomaterials for 4D stem cell culture". Current Opinion in Solid State and Materials Science 20, n.º 4 (agosto de 2016): 212–24. http://dx.doi.org/10.1016/j.cossms.2016.03.002.
Texto completo da fonteNies, Cordula, Tobias Rubner, Hanna Lorig, Vera Colditz, Helen Seelmann, Andreas Müller e Eric Gottwald. "A Microcavity Array-Based 4D Cell Culture Platform". Bioengineering 6, n.º 2 (31 de maio de 2019): 50. http://dx.doi.org/10.3390/bioengineering6020050.
Texto completo da fonteMiao, Shida, Haitao Cui, Timothy Esworthy, Bhushan Mahadik, Se‐jun Lee, Xuan Zhou, Sung Yun Hann, John P. Fisher e Lijie Grace Zhang. "4D Self‐Morphing Culture Substrate for Modulating Cell Differentiation". Advanced Science 7, n.º 6 (março de 2020): 1902403. http://dx.doi.org/10.1002/advs.201902403.
Texto completo da fonteZheng, Yijun, Mitchell Kim Liong Han, Qiyang Jiang, Bin Li, Jun Feng e Aránzazu del Campo. "4D hydrogel for dynamic cell culture with orthogonal, wavelength-dependent mechanical and biochemical cues". Materials Horizons 7, n.º 1 (2020): 111–16. http://dx.doi.org/10.1039/c9mh00665f.
Texto completo da fonteMiao, Shida, Haitao Cui, Timothy Esworthy, Bhushan Mahadik, Se‐jun Lee, Xuan Zhou, Sung Yun Hann, John P. Fisher e Lijie Grace Zhang. "Programmable Culture Substrates: 4D Self‐Morphing Culture Substrate for Modulating Cell Differentiation (Adv. Sci. 5/2020)". Advanced Science 7, n.º 6 (março de 2020): 2070034. http://dx.doi.org/10.1002/advs.202070034.
Texto completo da fonteYang, Chen, Jeffrey Luo, Marianne Polunas, Nikola Bosnjak, Sy‐Tsong Dean Chueng, Michelle Chadwick, Hatem E. Sabaawy, Shawn A. Chester, Ki‐Bum Lee e Howon Lee. "4D‐Printed Transformable Tube Array for High‐Throughput 3D Cell Culture and Histology". Advanced Materials 32, n.º 40 (31 de agosto de 2020): 2004285. http://dx.doi.org/10.1002/adma.202004285.
Texto completo da fonteSuvannasankha, Attaya, Colin D. Crean, Douglas R. Tompkins, Jesus Delgado-Calle, Teresita M. Bellido, G. David Roodman e John M. Chirgwin. "Regulation of Osteoblast Function in Myeloma Bone Disease By Semaphorin 4D". Blood 128, n.º 22 (2 de dezembro de 2016): 4439. http://dx.doi.org/10.1182/blood.v128.22.4439.4439.
Texto completo da fonteBurgstaller, Gerald, Sarah Vierkotten, Michael Lindner, Melanie Königshoff e Oliver Eickelberg. "Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue". American Journal of Physiology-Lung Cellular and Molecular Physiology 309, n.º 4 (15 de agosto de 2015): L323—L332. http://dx.doi.org/10.1152/ajplung.00061.2015.
Texto completo da fonteAngelats Lobo e Ginestra. "Cell Bioprinting: The 3D-Bioplotter™ Case". Materials 12, n.º 23 (2 de dezembro de 2019): 4005. http://dx.doi.org/10.3390/ma12234005.
Texto completo da fonteGerner, E. W., P. S. Mamont, A. Bernhardt e M. Siat. "Post-translational modification of the protein-synthesis initiation factor eIF-4D by spermidine in rat hepatoma cells". Biochemical Journal 239, n.º 2 (15 de outubro de 1986): 379–86. http://dx.doi.org/10.1042/bj2390379.
Texto completo da fonteTeses / dissertações sobre o assunto "4D cell culture"
Hahn, Franziska. "Échafaudages microporeux et électroactifs 4D comme plateforme innovante de culture cellulaire". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1333.
Texto completo da fonteIn vivo, cells are situated within a 3D porous and dynamic microenvironment that provides biochemical and biophysical cues as well as dynamic signals influencing cell behavior across physiological and pathological contexts. To better replicate these conditions in vitro for applications in fundamental cell biology, tissue engineering, and drug screening this thesis presents the development of 4D electroactive scaffolds, combining a 3D passive microporous polyHIPE architecture and an electroactive polymer, PEDOT. These scaffolds serve as a dynamic cell culture platform capable to deliver electromechanical stimulation. The study first focused on the synthesis and characterization of electroactive polyHIPE-PEDOT scaffolds, which demonstrated a highly porous (10 to 100 µm) and interconnective structure beneficial for rapid cell colonization. Notably, these scaffolds could undergo volumetric changes in response to electrical stimulation. The second part of this work focused the polyHIPE-PEDOT scaffolds were found to be suitable for cell culture applications. The scaffolds were found to be cytocompatible, supporting cell adhesion, migration and proliferation. Cells within the scaffold adopted a spindle-like cell morphology typical of 3D cell microenvironments and synthesized fibronectin, an extracellular matrix protein essential for cell-matrix interactions. In the third part of this thesis, an electromechanical stimulation device suitable for in vitro cell culture studies (6-well cell culture plate) and live cell imaging (glass bottomed petri dish) was developed. A stimulation protocol was established and did not induce acute cytotoxic effects. After stimulation, cells exhibited heterogenic cell morphology, however, remained spread within the porous structure of the scaffold. Different live cell probes allowed the real-time monitoring of the cell dynamics during electromechanical stimulation. Furthermore, the stimulated cells exhibited different cytokine profile compared to non-stimulated cells. Thus, this thesis demonstrated the proof of concept of the electroactive polyHIPE-PEDOT scaffold as a tool for 4D cell culture and for future mechanobiological studies
Capítulos de livros sobre o assunto "4D cell culture"
Seynhaeve, Ann L. B., e Timo L. M. ten Hagen. "An In Vivo Model to Study Cell Migration in XYZ-T Dimension Followed by Whole-Mount Re-evaluation". In Cell Migration in Three Dimensions, 325–41. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2887-4_19.
Texto completo da fonteArkenberg, Matthew R., Min Hee Kim e Chien-Chi Lin. "Click Hydrogels for Biomedical Applications". In Multicomponent Hydrogels, 155–91. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670055-00155.
Texto completo da fonteTrabalhos de conferências sobre o assunto "4D cell culture"
Ji, Kyungmin, Zhiguo Zhao, Kamiar Moin, Yong Xu e Bonnie F. Sloane. "Abstract B65: Live-cell imaging of 3D/4D parallel co-cultures of breast carcinoma cells and breast fibroblasts in tissue architecture and microenvironment engineering (TAME) chambers". In Abstracts: AACR Special Conference: Advances in Breast Cancer; October 17-20, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.advbc15-b65.
Texto completo da fonteMishra, Dhruva Kumar, Michael J. Thrall, Jonathan M. Kurie e Min P. Kim. "Abstract B31: Lung fibroblast enhances MMP-1 secretion when co-cultured with human lung cancer cells in the 4D lung cancer model". In Abstracts: AACR Special Conference on Cellular Heterogeneity in the Tumor Microenvironment; February 26 — March 1, 2014; San Diego, CA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.chtme14-b31.
Texto completo da fonte