Literatura científica selecionada sobre o tema "3D woven organic composites"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "3D woven organic composites".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "3D woven organic composites"
Gigliotti, Marco, Yannick Pannier, Marie Christine Lafarie-Frenot e Jean Claude Grandidier. "Some Examples of “Multi-Physical” Fatigue of Organic Matrix Composites for Aircraft Applications". Applied Mechanics and Materials 828 (março de 2016): 79–96. http://dx.doi.org/10.4028/www.scientific.net/amm.828.79.
Texto completo da fonteNeumann, S. Ephraim, Junpyo Kwon, Cornelius Gropp, Le Ma, Raynald Giovine, Tianqiong Ma, Nikita Hanikel et al. "The propensity for covalent organic frameworks to template polymer entanglement". Science 383, n.º 6689 (22 de março de 2024): 1337–43. http://dx.doi.org/10.1126/science.adf2573.
Texto completo da fonteFan, Wei, Jingjing Dong, Bingxin Wei, Chao Zhi, Linjie Yu, Lili Xue, Wensheng Dang e Long Li. "Fast and accurate bending modulus prediction of 3D woven composites via experimental modal analysis". Polymer Testing 78 (setembro de 2019): 105938. http://dx.doi.org/10.1016/j.polymertesting.2019.105938.
Texto completo da fonteFoti, Federico, Yannick Pannier, Salvador Orenes Balaciart, Jean-Claude Grandidier, Marco Gigliotti e Camille Guigon. "In-situ multi-axial testing of three-dimensional (3D) woven organic matrix composites for aeroengine applications". Composite Structures 273 (outubro de 2021): 114259. http://dx.doi.org/10.1016/j.compstruct.2021.114259.
Texto completo da fonteRuggles-Wrenn, M. B., e S. A. Alnatifat. "Fully-reversed tension-compression fatigue of 2D and 3D woven polymer matrix composites at elevated temperature". Polymer Testing 97 (maio de 2021): 107179. http://dx.doi.org/10.1016/j.polymertesting.2021.107179.
Texto completo da fonteWang, Caizheng, Dandan Su, Zhifeng Xie, Ke Zhang, Ning Wu, Meiyue Han e Ming Zhou. "Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres". Polymer Testing 101 (setembro de 2021): 107314. http://dx.doi.org/10.1016/j.polymertesting.2021.107314.
Texto completo da fonteGillet, Camille, Valérie Nassiet, Fabienne Poncin‐Epaillard, Bouchra Hassoune‐Rhabbour e Tatiana Tchalla. "Chemical Behavior of Water Absorption in a Carbon/Epoxy 3D Woven Composite". Macromolecular Symposia 405, n.º 1 (outubro de 2022): 2100213. http://dx.doi.org/10.1002/masy.202100213.
Texto completo da fonteSafari, Hamid, Mehdi Karevan e Hassan Nahvi. "Mechanical characterization of natural nano-structured zeolite/polyurethane filled 3D woven glass fiber composite sandwich panels". Polymer Testing 67 (maio de 2018): 284–94. http://dx.doi.org/10.1016/j.polymertesting.2018.03.018.
Texto completo da fonteTripathi, Lekhani, e B. K. Behera. "Review: 3D woven honeycomb composites". Journal of Materials Science 56, n.º 28 (9 de julho de 2021): 15609–52. http://dx.doi.org/10.1007/s10853-021-06302-5.
Texto completo da fonteBilisik, Kadir. "Multiaxis 3D Woven Preform and Properties of Multiaxis 3D Woven and 3D Orthogonal Woven Carbon/Epoxy Composites". Journal of Reinforced Plastics and Composites 29, n.º 8 (27 de maio de 2009): 1173–86. http://dx.doi.org/10.1177/0731684409103153.
Texto completo da fonteTeses / dissertações sobre o assunto "3D woven organic composites"
Orenes, Balaciart Salvador. "In Situ Characterization by Acoustic Emission and X-Ray μ-Computed-Tomography of the Effects of Temperature, Aging, and Multi-Axial Loads on Damage Onset in 3D Woven Organic Matrix Composites for Aeronautical Applications". Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0010.
Texto completo da fonteThe field of aeronautical engineering has seen considerable advancements over the past decades in materials science. Carbon fibre Three-Dimensional Woven Organic Matrix composites (3DOMC) are increasingly used as elements of structural parts close to aircraft engines and in aero-engine fan blades. These materials are therefore requested to operate in high-performance ranges subjected to multi-axial mechanical solicitations at different temperatures and exposed to cold/hot thermal cycling. Although there is substantial literature on the effects of such solicitations on the fracture behavior and ultimate damage mechanisms of 3DOMC, there is a limited study on the initial damage mechanisms. This gap is particularly critical since the onset of damage dictates the usability of such components; from operational standpoint, no damage is permissible in service in these parts. This work aims to develop a novel experimental methodology to characterize the onset of damage in 3DOMC for different multi-axial solicitations encountered in-service.To achieve this, an in situ test has been designed coupling μ-Computed Tomography (μ-CT) and Acoustic Emission (AE), successfully identifying multi-axial damage initiation during tensile test and Eccentric Compression Bending (ECB) in in-axis and off-axis specimens. The effect of temperature has been addressed via in situ test implementing the new developed methodology test at high (120ºC) and low (-30ºC) temperature; it has been found damage initiation mechanisms are strongly dependent on temperature.The effect of thermal cycling between 120ºC and -55ºC on damage onset has been characterized by AE and ex situ (μ-CT). Further, damage propagation up to 1000 cycles has been characterized in detail in the 3D woven meso-structure. Finally, thermal cycling degradation and ageing on damage onset is investigated in static in situ tensile test
Stig, Fredrik. "3D-woven Reinforcement in Composites". Doctoral thesis, KTH, Lättkonstruktioner, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-70438.
Texto completo da fonteQC 20120131
El, Said Bassam Sabry Fawzy. "Integrated multi-scale modelling of 3D woven composites". Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720811.
Texto completo da fonteKing, Robert Scott. "Damage tolerant 3D woven technical textiles in reinforced composites". Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516537.
Texto completo da fonteDai, Shuo. "Mechanical characterisation and numerical modelling of 3D woven composites". Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16221.
Texto completo da fonteArshad, Mubeen. "Damage tolerance of 3D woven composites with weft binders". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/damage-tolerance-of-3d-woven-composites-with-weft-binders(2b1435bc-fdb7-47c3-b555-ca5ea2883b4b).html.
Texto completo da fonteGreen, Steven Daniel. "Modelling preform consolidation and its effects in 3D woven composites". Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.705451.
Texto completo da fonteStig, Fredrik. "An Introduction to the Mechanics of 3D-Woven Fibre Reinforced Composites". Licentiate thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10235.
Texto completo da fonteManjunath, R. N. "Design and development of 3D woven complex hollow structures and their composites for energy absorbent structures". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8059.
Texto completo da fonteBroderick, John. "Advancement of 3D woven composites through embedded in situ strain measurement". Thesis, University of Ulster, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546738.
Texto completo da fonteCapítulos de livros sobre o assunto "3D woven organic composites"
Seyam, Abdel-Fattah M. "3D Orthogonal Woven Fabric Formation, Structure, and Their Composites". In Advanced Weaving Technology, 361–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91515-5_10.
Texto completo da fonteCouégnat, G., E. Martin e J. Lamon. "3D Multiscale Modeling of the Mechanical Behavior of Woven Composite Materials". In Mechanical Properties and Performance of Engineering Ceramics and Composites V, 185–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944127.ch19.
Texto completo da fonteJudawisastra, H., J. Ivens e I. Verpoest. "Bending Fatigue Behaviour of PUR-Epoxy and Phenolic 3D Woven Sandwich Composites". In Mechanics of Sandwich Structures, 287–94. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9091-4_34.
Texto completo da fonteKoutsonas, Spiridon, e Hasan Haroglu. "Computational Optimization of Voids on 3D Woven Composites Truss Structures During Infusion". In Lecture Notes in Networks and Systems, 326–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80119-9_18.
Texto completo da fonteAhmed, Sohail, Xitao Zheng, Tianchi Wu e Nadeem Ali Bhatti. "Meso-Scale Damage Modeling of Hybrid 3D Woven Orthogonal Composites Under Uni-Axial Compression". In Lecture Notes in Mechanical Engineering, 816–26. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8331-1_64.
Texto completo da fonteEberling-Fux, N., R. Pailler, A. Guette, Sebastien Bertrand e Eric Philippe. "Impregnation of 3D Woven Carbon Fibre Preforms by Electrophoretic Deposition of Single and Mix of Non Oxide Ceramic Nanoscale Powders, and Densification of the Composite Material". In Advanced Inorganic Fibrous Composites V, 91–96. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-06-0.91.
Texto completo da fonteTong, Liyong, Adrian P. Mouritz e Michael K. Bannister. "3D Woven Composites". In 3D Fibre Reinforced Polymer Composites, 107–36. Elsevier, 2002. http://dx.doi.org/10.1016/b978-008043938-9/50017-x.
Texto completo da fonteHallett, Stephen R., Steve D. Green e Bassam S. F. El Said. "MODELLING 3D WOVEN COMPOSITE PREFORM DEFORMATIONS". In Woven Composites, 141–58. IMPERIAL COLLEGE PRESS, 2015. http://dx.doi.org/10.1142/9781783266180_0004.
Texto completo da fonteUllah, Tehseen, Yasir Nawab e Muhammad Umair. "3D woven natural fiber structures". In Multiscale Textile Preforms and Structures for Natural Fiber Composites, 241–78. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-95329-0.00002-8.
Texto completo da fonteIvanov, Dmitry S., e Stepan V. Lomov. "Modeling of 2D and 3D woven composites". In Polymer Composites in the Aerospace Industry, 23–57. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102679-3.00002-2.
Texto completo da fonteTrabalhos de conferências sobre o assunto "3D woven organic composites"
Tayong, Rostand B., Martin J. Mienczakowski e Robert A. Smith. "3D ultrasound characterization of woven composites". In 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 37. Author(s), 2018. http://dx.doi.org/10.1063/1.5031603.
Texto completo da fonteGoering, Jon, e Harun Bayraktar. "3D Woven Composites for Energy Absorption Applications". In SAE 2016 World Congress and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-0530.
Texto completo da fonteCHERUET, ANTHONY, e BOBBY COOK. "Material Simulation’s Advantage: An illustration with 3D Woven". In American Society for Composites 2018. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/25934.
Texto completo da fonteWeatherburn, Anna, Anne Reinarz, Stefano Giani e Stefan Szyniszewski. "Modelling Fracture Behaviour in Fibre-Hybrid 3D Woven Composites". In UK Association for Computational Mechanics Conference 2024. Durham University, 2024. http://dx.doi.org/10.62512/conf.ukacm2024.002.
Texto completo da fonteThuruthimattam, B., e N. Naik. "Mechanical characterization of hybridized 3D orthogonally woven composites". In 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1809.
Texto completo da fonteYen, Chian-Fong, e Benjamin Boesl. "Progressive Failure Micromechanical Modeling of 3D Woven Composites". In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1796.
Texto completo da fonteWANG, YOUQI, BINGHUI LIU, LUN LI, AARON TOMICH e CHIAN FONG YEN. "CAD/CAM Tool for 3D Woven Textile Fabric Design". In American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15209.
Texto completo da fonteOddy, C., M. Ekh e M. Fagerstrom. "Phase-field Based Damage Modelling of 3D-Woven Composites". In VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.084.
Texto completo da fontePINEDA, EVAN J., BRETT A. BEDNARCYK, TRENT M. RICKS, BABAK FARROKH e WADE JACKSON. "Multiscale Failure Analysis of a 3D Woven Unit Cell Containing Defects". In American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34928.
Texto completo da fonteDRACH, BORYS. "Finite Element Analysis of 3D Woven Composites Using Consumer Graphical Processing Units". In American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34923.
Texto completo da fonteRelatórios de organizações sobre o assunto "3D woven organic composites"
Yen, Chian-Fong, e Anthony A. Caiazzo. 3D Woven Composites for New and Innovative Impact and Penetration Resistant Systems. Fort Belvoir, VA: Defense Technical Information Center, julho de 2001. http://dx.doi.org/10.21236/ada393077.
Texto completo da fonte