Artigos de revistas sobre o tema "3D vibrometry"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "3D vibrometry".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Breaban, Florin, Roger Debuchy e Didier Defer. "Laser Scanning Vibrometry and Holographic Interferometry Applied to Vibration Study". Applied Mechanics and Materials 801 (outubro de 2015): 303–11. http://dx.doi.org/10.4028/www.scientific.net/amm.801.303.
Texto completo da fonteOrta, Adil Han, Mathias Kersemans e Koen Van Den Abeele. "On the Identification of Orthotropic Elastic Stiffness Using 3D Guided Wavefield Data". Sensors 22, n.º 14 (15 de julho de 2022): 5314. http://dx.doi.org/10.3390/s22145314.
Texto completo da fonteParikesit, Gea O. F., e Indraswari Kusumaningtyas. "How to use 3D shadows for simple microscopy and vibrometry". Physics Education 52, n.º 4 (13 de junho de 2017): 045026. http://dx.doi.org/10.1088/1361-6552/aa74aa.
Texto completo da fonteGrigg, S., M. Pearson, R. Marks, C. Featherston e R. Pullin. "Assessment of Damage Detection in Composite Structures Using 3D Vibrometry". Journal of Physics: Conference Series 628 (9 de julho de 2015): 012101. http://dx.doi.org/10.1088/1742-6596/628/1/012101.
Texto completo da fonteWeekes, Ben, e David Ewins. "Multi-frequency, 3D ODS measurement by continuous scan laser Doppler vibrometry". Mechanical Systems and Signal Processing 58-59 (junho de 2015): 325–39. http://dx.doi.org/10.1016/j.ymssp.2014.12.022.
Texto completo da fonteMarks, Ryan, Clare Gillam, Alastair Clarke, Joe Armstrong e Rhys Pullin. "Damage detection in a composite wind turbine blade using 3D scanning laser vibrometry". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, n.º 16 (6 de dezembro de 2016): 3024–41. http://dx.doi.org/10.1177/0954406216679612.
Texto completo da fonteSokołowski, Jacek, Adam Orłowski, Robert Bartoszewicz, Magdalena Lachowska, Alicja Gosiewska, Przemyslaw Biecek e Kazimierz Niemczyk. "Quantitative analysis of 3D-printed custom ossicular prostheses motion using laser Doppler vibrometry". Otolaryngologia Polska 77, n.º 6 (29 de fevereiro de 2024): 23–30. http://dx.doi.org/10.5604/01.3001.0053.9038.
Texto completo da fonteDerusova, Daria A., Vladimir P. Vavilov, Nikolay V. Druzhinin, Victor Y. Shpil’noi e Alexey N. Pestryakov. "Detecting Defects in Composite Polymers by Using 3D Scanning Laser Doppler Vibrometry". Materials 15, n.º 20 (14 de outubro de 2022): 7176. http://dx.doi.org/10.3390/ma15207176.
Texto completo da fonteMarks, Ryan, Alastair Clarke, Carol Featherston, Christophe Paget e Rhys Pullin. "Lamb Wave Interaction with Adhesively Bonded Stiffeners and Disbonds Using 3D Vibrometry". Applied Sciences 6, n.º 1 (7 de janeiro de 2016): 12. http://dx.doi.org/10.3390/app6010012.
Texto completo da fonteCrua, Cyril, e Morgan R. Heikal. "Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry". Measurement Science and Technology 25, n.º 12 (29 de outubro de 2014): 125301. http://dx.doi.org/10.1088/0957-0233/25/12/125301.
Texto completo da fonteScislo, Lukasz. "Single-Point and Surface Quality Assessment Algorithm in Continuous Production with the Use of 3D Laser Doppler Scanning Vibrometry System". Sensors 23, n.º 3 (22 de janeiro de 2023): 1263. http://dx.doi.org/10.3390/s23031263.
Texto completo da fonteStaszewski, W. J., B. C. Lee e R. Traynor. "Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry". Measurement Science and Technology 18, n.º 3 (24 de janeiro de 2007): 727–39. http://dx.doi.org/10.1088/0957-0233/18/3/024.
Texto completo da fontePedrini, G., S. Schedin e H. J. Tiziani. "Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects". Optics and Lasers in Engineering 38, n.º 3-4 (setembro de 2002): 117–29. http://dx.doi.org/10.1016/s0143-8166(02)00005-2.
Texto completo da fonteKim, Wihan, Derek Liu, Sangmin Kim, Kumara Ratnayake, Frank Macias-Escriva, Scott Mattison, John S. Oghalai e Brian E. Applegate. "Vector of motion measurements in the living cochlea using a 3D OCT vibrometry system". Biomedical Optics Express 13, n.º 4 (30 de março de 2022): 2542. http://dx.doi.org/10.1364/boe.451537.
Texto completo da fonteFilippov, Andrey V., Vladimir A. Krasnoveikin, Nikolay V. Druzhinin e Valery E. Rubtsov. "The Use of Laser-Doppler Vibrometry for Modal Analysis of Carbon-Fiber Reinforced Composite". Key Engineering Materials 712 (setembro de 2016): 313–18. http://dx.doi.org/10.4028/www.scientific.net/kem.712.313.
Texto completo da fonteMedel, Francisco, Víctor Esteban e Javier Abad. "On the use of laser-scanning vibrometry for mechanical performance evaluation of 3D printed specimens". Materials & Design 205 (julho de 2021): 109719. http://dx.doi.org/10.1016/j.matdes.2021.109719.
Texto completo da fonteCandelaresi, D., A. Annessi, G. Allevi, M. Martarelli e P. Castellini. "A wavefront track approach to defect detection in composites by scanning laser Doppler vibrometry". Journal of Physics: Conference Series 2698, n.º 1 (1 de fevereiro de 2024): 012008. http://dx.doi.org/10.1088/1742-6596/2698/1/012008.
Texto completo da fonteLee, Hee Yoon, Patrick D. Raphael, Jesung Park, Audrey K. Ellerbee, Brian E. Applegate e John S. Oghalai. "Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea". Proceedings of the National Academy of Sciences 112, n.º 10 (3 de março de 2015): 3128–33. http://dx.doi.org/10.1073/pnas.1500038112.
Texto completo da fonteZdziebko, Paweł, Mateusz Krzemiński, Maciej Okoń, Gabriela Loi, Francesco Aymerich, Łukasz Pieczonka e Andrzej Klepka. "An Approach to the Automated Characterization of Out-of-Plane and In-Plane Local Defect Resonances". Materials 16, n.º 8 (13 de abril de 2023): 3084. http://dx.doi.org/10.3390/ma16083084.
Texto completo da fonteWang, Chia-Fu, Junghyun Wee e Kara Peters. "Amplifying Lamb Wave Detection for Fiber Bragg Grating with a Phononic Crystal GRIN Lens Waveguide". Sensors 22, n.º 21 (2 de novembro de 2022): 8426. http://dx.doi.org/10.3390/s22218426.
Texto completo da fonteAryan, P., A. Kotousov, C. T. Ng e B. S. Cazzolato. "A baseline-free and non-contact method for detection and imaging of structural damage using 3D laser vibrometry". Structural Control and Health Monitoring 24, n.º 4 (10 de junho de 2016): e1894. http://dx.doi.org/10.1002/stc.1894.
Texto completo da fonteRittmeier, Liv, Thomas Roloff, Natalie Rauter, Andrey Mikhaylenko, Jan Niklas Haus, Rolf Lammering, Andreas Dietzel e Michael Sinapius. "Influence of a Flat Polyimide Inlay on the Propagation of Guided Ultrasonic Waves in a Narrow GFRP-Specimen". Materials 15, n.º 19 (29 de setembro de 2022): 6752. http://dx.doi.org/10.3390/ma15196752.
Texto completo da fonteDe Boi, Ivan, Bart Ribbens, Pieter Jorissen e Rudi Penne. "Feasibility of Kd-Trees in Gaussian Process Regression to Partition Test Points in High Resolution Input Space". Algorithms 13, n.º 12 (5 de dezembro de 2020): 327. http://dx.doi.org/10.3390/a13120327.
Texto completo da fonteMarks, R., A. Clarke, C. Featherston, L. Kawashita, C. Paget e R. Pullin. "Using genetic algorithms to optimize an active sensor network on a stiffened aerospace panel with 3D scanning laser vibrometry data". Journal of Physics: Conference Series 628 (9 de julho de 2015): 012116. http://dx.doi.org/10.1088/1742-6596/628/1/012116.
Texto completo da fonteHedayatrasa, Saeid, e Mathias Kersemans. "3D intra-cellular wave dynamics in a phononic plate with ultra-wide bandgap: attenuation, resonance and mode conversion". Smart Materials and Structures 31, n.º 3 (2 de fevereiro de 2022): 035010. http://dx.doi.org/10.1088/1361-665x/ac4d65.
Texto completo da fonteWoodrow, Charlie, Ed Baker, Thorin Jonsson e Fernando Montealegre-Z. "Reviving the sound of a 150-year-old insect: The bioacoustics of Prophalangopsis obscura (Ensifera: Hagloidea)". PLOS ONE 17, n.º 8 (10 de agosto de 2022): e0270498. http://dx.doi.org/10.1371/journal.pone.0270498.
Texto completo da fonteSharma, Arun K., e Bishakh Bhattacharya. "Parameter estimation of butyl rubber aided with dynamic mechanical analysis for numerical modelling of an air-inflated torus and experimental validation using 3D-laser Doppler vibrometer". Journal of Low Frequency Noise, Vibration and Active Control 38, n.º 2 (30 de janeiro de 2019): 296–311. http://dx.doi.org/10.1177/1461348419825685.
Texto completo da fonteBouzzit, Aziz, Loïc Martinez, Andres Arciniegas, Stéphane Serfaty e Nicolas Wilkie-Chancellier. "Ellipsometry of surface acoustic waves using 3D vibrometry for viscoelastic material characterization by the estimation of complex Lamé coefficients versus the frequency". Applied Acoustics 228 (janeiro de 2025): 110312. http://dx.doi.org/10.1016/j.apacoust.2024.110312.
Texto completo da fonteNormandin, Benjamin, e Martin Veidt. "Single Transducer Pair Lamb Wave Time Reversal for Damage Detection in Composite Laminates". Key Engineering Materials 558 (junho de 2013): 205–17. http://dx.doi.org/10.4028/www.scientific.net/kem.558.205.
Texto completo da fonteDíaz-García, Lara, Andrew Reid, Joseph Jackson-Camargo e James Windmill. "Directional passive acoustic structures inspired by the ear of Achroia grisella". Journal of the Acoustical Society of America 152, n.º 4 (outubro de 2022): A92. http://dx.doi.org/10.1121/10.0015652.
Texto completo da fonteWojtczak, E., M. Rucka e A. Andrzejewska. "Damage detection in 3D printed plates using ultrasonic wave propagation supported with weighted root mean square calculation and wavefield curvature imaging". Journal of Physics: Conference Series 2647, n.º 18 (1 de junho de 2024): 182003. http://dx.doi.org/10.1088/1742-6596/2647/18/182003.
Texto completo da fonteHeinz, Stefan, Frank Balle, Guntram Wagner e Dietmar Eifler. "Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry". Ultrasonics 53, n.º 8 (dezembro de 2013): 1433–40. http://dx.doi.org/10.1016/j.ultras.2013.03.002.
Texto completo da fonteReid, Andrew, Thibaut Marin-Cudraz, James F. C. Windmill e Michael D. Greenfield. "Evolution of directional hearing in moths via conversion of bat detection devices to asymmetric pressure gradient receivers". Proceedings of the National Academy of Sciences 113, n.º 48 (14 de novembro de 2016): E7740—E7748. http://dx.doi.org/10.1073/pnas.1615691113.
Texto completo da fonteShen, Zhiyuan, Thomas R. Neil, Daniel Robert, Bruce W. Drinkwater e Marc W. Holderied. "Biomechanics of a moth scale at ultrasonic frequencies". Proceedings of the National Academy of Sciences 115, n.º 48 (12 de novembro de 2018): 12200–12205. http://dx.doi.org/10.1073/pnas.1810025115.
Texto completo da fonteRuiz-Díez, Víctor, Jorge Hernando-García, Javier Toledo, Abdallah Ababneh, Helmut Seidel e José Luis Sánchez-Rojas. "Bidirectional Linear Motion by Travelling Waves on Legged Piezoelectric Microfabricated Plates". Micromachines 11, n.º 5 (20 de maio de 2020): 517. http://dx.doi.org/10.3390/mi11050517.
Texto completo da fonteLi, Jia, Liujie Ren, Tongge Wu, Dongming Yin, Peidong Dai, Lifen Chen e Tianyu Zhang. "Experimental and Numerical Studies on Vibration Modes and Transcranial Attenuation Characteristics in Unilateral Bone Conduction Hearing". Shock and Vibration 2020 (1 de junho de 2020): 1–17. http://dx.doi.org/10.1155/2020/4962098.
Texto completo da fonteHolmes, Lewis B., Charlie Woodrow, Fabio A. Sarria-S, Emine Celiker e Fernando Montealegre-Z. "Wing mechanics and acoustic communication of a new genus of sylvan katydid (Orthoptera: Tettigoniidae: Pseudophyllinae) from the Central Cordillera cloud forest of Colombia". PeerJ 12 (28 de junho de 2024): e17501. http://dx.doi.org/10.7717/peerj.17501.
Texto completo da fonteDing, Chengqiao, Dachen Wang, Zhe Feng e Di Cui. "Extracting and Modifying the Vibration Characteristic Parameters of Watermelon Based on Experimental Modal Measurement and Finite Element Analysis for Hollow Heart Defect Detection". Journal of the ASABE 65, n.º 1 (2022): 151–67. http://dx.doi.org/10.13031/ja.14871.
Texto completo da fonteWeisbecker, H., B. Cazzolato, S. Wildy, S. Marburg, J. Codrington e A. Kotousov. "Surface Strain Measurements Using a 3D Scanning Laser Vibrometer". Experimental Mechanics 52, n.º 7 (6 de outubro de 2011): 805–15. http://dx.doi.org/10.1007/s11340-011-9545-5.
Texto completo da fonteMatczak, Joanna, e Kamil Matczak. "Research position for testing the natural frequency of rotor blades using a PSV-500-3D vibrometer". AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe 19, n.º 12 (31 de dezembro de 2018): 566–69. http://dx.doi.org/10.24136/atest.2018.453.
Texto completo da fonteSels, Seppe, Bart Ribbens, Boris Bogaerts, Jeroen Peeters e Steve Vanlanduit. "3D model assisted fully automated scanning laser Doppler vibrometer measurements". Optics and Lasers in Engineering 99 (dezembro de 2017): 23–30. http://dx.doi.org/10.1016/j.optlaseng.2016.09.007.
Texto completo da fontePíštěk, Václav, Pavel Kučera, Oleksij Fomin, Alyona Lovska e Aleš Prokop. "Acoustic Identification of Turbocharger Impeller Mistuning—A New Tool for Low Emission Engine Development". Applied Sciences 10, n.º 18 (14 de setembro de 2020): 6394. http://dx.doi.org/10.3390/app10186394.
Texto completo da fonteRen, Zesheng, Yuyong Xiong, Zhike Peng e Guang Meng. "3D microwave vibrometer: Contactless three-dimensional vibration measurements using microwave radars". Mechanical Systems and Signal Processing 183 (janeiro de 2023): 109622. http://dx.doi.org/10.1016/j.ymssp.2022.109622.
Texto completo da fonteOhara, Yoshikazu, Marcel C. Remillieux, T. J. Ulrich, Serina Ozawa, Kosuke Tsunoda, Toshihiro Tsuji e Tsuyoshi Mihara. "High-resolution 3D phased-array imaging of fatigue cracks using piezoelectric and laser ultrasonic system (PLUS)". Japanese Journal of Applied Physics 61, SG (19 de maio de 2022): SG1043. http://dx.doi.org/10.35848/1347-4065/ac48cd.
Texto completo da fonteKhalil, Hossam, Dongkyu Kim, Joonsik Nam e Kyihwan Park. "Accuracy and noise analyses of 3D vibration measurements using laser Doppler vibrometer". Measurement 94 (dezembro de 2016): 883–92. http://dx.doi.org/10.1016/j.measurement.2016.09.003.
Texto completo da fonteBouzzit, A., A. Arciniegas, L. Martinez, S. Serfaty e N. Wilkie-Chancellier. "Material characterization by surface wave parameters extraction using 3D vibrometer and ellipsometry". Journal of Physics: Conference Series 2768, n.º 1 (1 de maio de 2024): 012001. http://dx.doi.org/10.1088/1742-6596/2768/1/012001.
Texto completo da fonteDolev, Amit, e Selman Sakar. "The dynamics of partially encapsulated microbubbles subjected to ultrasound". Journal of the Acoustical Society of America 153, n.º 3_supplement (1 de março de 2023): A52. http://dx.doi.org/10.1121/10.0018133.
Texto completo da fonteHe, Xiao Yuan, Fei Peng Zhu, Cheng Fei Wang e Ying Jun Xu. "Stroboscopic Fringe Projection Method for 3D Dynamic Displacement Measurement". Applied Mechanics and Materials 70 (agosto de 2011): 255–60. http://dx.doi.org/10.4028/www.scientific.net/amm.70.255.
Texto completo da fonteVehovszky, Balázs, István Horváth, Karl Slenczka, Martin Schuster e Tamás Jakubík. "Vibration Damping Measurement on Car Windshields". Periodica Polytechnica Mechanical Engineering 63, n.º 1 (13 de novembro de 2018): 1–6. http://dx.doi.org/10.3311/ppme.11559.
Texto completo da fonteRau, Mark, Julius O. Smith e Doug L. James. "Augmenting a single-point laser Doppler vibrometer to perform scanning measurements". Journal of the Acoustical Society of America 151, n.º 4 (abril de 2022): A157. http://dx.doi.org/10.1121/10.0010962.
Texto completo da fonte