Literatura científica selecionada sobre o tema "3d photography"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "3d photography".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "3d photography"
Schuhr, W., e J. D. Lee. "Filling gaps in cultural heritage documentation by 3D photography". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-5/W7 (13 de agosto de 2015): 365–69. http://dx.doi.org/10.5194/isprsarchives-xl-5-w7-365-2015.
Texto completo da fonteLatto, Richard, e Bernard Harper. "The Non-Realistic Nature of Photography: Further Reasons Why Turner Was Wrong". Leonardo 40, n.º 3 (junho de 2007): 243–47. http://dx.doi.org/10.1162/leon.2007.40.3.243.
Texto completo da fonteHedman, Peter, Suhib Alsisan, Richard Szeliski e Johannes Kopf. "Casual 3D photography". ACM Transactions on Graphics 36, n.º 6 (20 de novembro de 2017): 1–15. http://dx.doi.org/10.1145/3130800.3130828.
Texto completo da fonteHedman, Peter, e Johannes Kopf. "Instant 3D photography". ACM Transactions on Graphics 37, n.º 4 (10 de agosto de 2018): 1–12. http://dx.doi.org/10.1145/3197517.3201384.
Texto completo da fonteBlade, Richard A. "Stereographic Photography on the Computer". International Journal of Virtual Reality 1, n.º 2 (1 de janeiro de 1995): 40–42. http://dx.doi.org/10.20870/ijvr.1995.1.2.2605.
Texto completo da fonteSetyanto, Daniar Wikan, Puri Sulistiyawati e Erisa Adyati Rahmasari. "Implementasi Nirmana pada Fotografi Portraiture 3D Anaglyph". ANDHARUPA: Jurnal Desain Komunikasi Visual & Multimedia 4, n.º 02 (28 de agosto de 2018): 143–56. http://dx.doi.org/10.33633/andharupa.v4i02.1790.
Texto completo da fonteFathoni, Ahmad Faisal Choiril Anam, e Dermawan Syamsuddin. "Perbandingan Metode Depth of Field pada Lensa Kamera Fotografi dengan Efek Lensa pada Software Animasi". Humaniora 4, n.º 1 (30 de abril de 2013): 177. http://dx.doi.org/10.21512/humaniora.v4i1.3427.
Texto completo da fonteBaid, Anisha. "Wild Life". Membrana Journal of Photography, Vol. 3, no. 1 (2018): 20–25. http://dx.doi.org/10.47659/m4.020.art.
Texto completo da fonteGuesdon, Céline. "Toward a New Kind of Image: Photosynthegraphy". Leonardo 39, n.º 3 (junho de 2006): 193–97. http://dx.doi.org/10.1162/leon.2006.39.3.193.
Texto completo da fonteXue, Xiaowei, Chunxue Wu, Ze Sun, Yan Wu e Neal Xiong. "Vegetation Greening for Winter Oblique Photography Using Cycle-Consistence Adversarial Networks". Symmetry 10, n.º 7 (20 de julho de 2018): 294. http://dx.doi.org/10.3390/sym10070294.
Texto completo da fonteTeses / dissertações sobre o assunto "3d photography"
Scott-Murray, Amy. "Applications of 3D computational photography to marine science". Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=233937.
Texto completo da fonteFerguson, Paul. "Development of a 3D audio panning and realtime visualisation toolset using emerging technologies". Thesis, Edinburgh Napier University, 2010. http://researchrepository.napier.ac.uk/Output/6698.
Texto completo da fonteSlysz, Rémi. "Reconstruction de surface 3D d'objets vivants". Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0022/document.
Texto completo da fonteThis thesis is part of the CPER BRAMSS project, one of its objectives was to develop an surface's retrieval method applied to the female bust. Therefore the work has aimed at the design, development and implementation of a three-dimensional measuring machine adapted to living objects.Among the large number of existing methods of three-dimensional measurements, attention was paid to the stereo matching as well as the use of structured light. Matching in stereovision is to find homologous pixels in two images of the same scene, taken from two different points of view. One way to achieve the mapping is to use correlation measurements. The algorithms used come up against certain difficulties: the changing light, noises, distortions, occlusions, low textured areas and large homogeneous areas. The use of structured light allow essentially the adding of information in homogeneous areas in this work. Developing this approach, an original method of reconstruction based on the exploitation of a particular pattern projected on the surface has been designed. A matching based on a comparison of the signatures of specific points in the pattern was implemented. This method allows a single sparse reconstruction acquisition step and simplifies the handling of the point cloud when transforming it in a surface mesh
FAUSZ, JAMES K. "EXPLORING PUBLIC INVOLVEMENT THROUGH PHOTOGRAPHY AND INTERACTIVE DESIGN". University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1147629903.
Texto completo da fonteLee, Won Hee. "Bundle block adjustment using 3D natural cubic splines". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211476222.
Texto completo da fonteEl-Hajjaji, Abdellah. "Traitement numérique en 3D d'un couple d'images stéréo du satellite SPOT". Rouen, 1993. http://www.theses.fr/1993ROUES028.
Texto completo da fonteThe aim of our research was to extract the level h of a precise landscape taken over two differents angles by the satellite SPOT. To do so, we have modelised the movement of the satellite and his optical system to transform the two first images in another one, epipolar which will allow us to reduce the matching time and to find with success the equivalent pixels. For the pairing, we have utilised a technic wich is based on the corrolation and of the dynamic programming. This method was very satisfactory and allow us to match 96 % of the equivalent pixels, with an error of less than 5 meters, but the original problem is still a matter of research for complimentary studing
Abranches, Gonçalo Botelho de Sousa. "Determinação da qualidade geométrica de superfície refletoras com recurso à fotogrametria". Master's thesis, Universidade de Évora, 2018. http://hdl.handle.net/10174/23893.
Texto completo da fonteSilva, Roger Correia Pinheiro. "Desenvolvimento e análise de um digitalizador câmera-projetor de alta definição para captura de geometria e fotometria". Universidade Federal de Juiz de Fora (UFJF), 2011. https://repositorio.ufjf.br/jspui/handle/ufjf/3515.
Texto completo da fonteApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T19:52:42Z (GMT) No. of bitstreams: 1 rogercorreiapinheirosilva.pdf: 22838442 bytes, checksum: 0bd115f462fc7572058a542e9ed91fcc (MD5)
Made available in DSpace on 2017-03-06T19:52:42Z (GMT). No. of bitstreams: 1 rogercorreiapinheirosilva.pdf: 22838442 bytes, checksum: 0bd115f462fc7572058a542e9ed91fcc (MD5) Previous issue date: 2011-08-26
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Um sistema câmera-projetor é capaz de capturar informação geométrica tridimensional de objetos e ambientes do mundo real. A captura de geometria em tal sistema baseia-se na projeção de luz estruturada sobre um objeto através do projetor, e na captura da cena modulada através da câmera. Com o sistema previamente calibrado, a deformação da luz projetada causada pelo objeto fornece a informação necessária para reconstruir a geometria do mesmo por meio de triangulação. Este trabalho descreve o desenvolvimento de um digitalizador câmera-projetor de alta definição (com resoluções de até 1920x1080 e 1280x720); são detalhadas as etapas e processos que conduzem à reconstrução de geometria, como calibração câmera-projetor, calibração de cores, processamento da imagem capturada e triangulação. O digitalizador desenvolvido utiliza a codificação de luz estruturada (b; s)-BCSL, que emprega a projeção de uma sequência de faixas verticais coloridas sobre a cena. Este esquema de codificação flexível oferece um número variado de faixas para projeção: quanto maior o número de faixas, mais detalhada a geometria capturada. Um dos objetivos deste trabalho é estimar o número limite de faixas (b,s)-BCSL possível dentro das resoluções atuais de vídeo de alta definição. Este número limite é aquele que provê reconstrução densa da geometria alvo, e ao mesmo tempo possui baixo nível de erro. Para avaliar a geometria reconstruída pelo digitalizador para os diversos números de faixas, é proposto um protocolo para avaliação de erro. O protocolo desenvolvido utiliza planos como objetos para mensurar a qualidade de reconstrução geométrica. A partir da nuvem de pontos gerada pelo digitalizador, a equação do plano para a mesma é estimada por meio de mínimos quadrados. Para um número fixo de faixas, são feitas cinco digitalizações independentes do plano: cada digitalização leva a uma equação; também é computado o plano médio, estimado a partir da união das cinco nuvens de pontos. Uma métrica de distância no espaço projetivo é usada para avaliar a precisão e a acurácia de cada número de faixas projetados. Além da avaliação quantitativa, a geometria de vários objetos é apresentada para uma avaliação qualitativa. Os resultados demonstram que a quantidade de faixas limite para vídeos de alta resolução permite uma grande densidade de pontos mesmo em superfícies com alta variação de cores.
A camera-projector system is capable of capturing three-dimensional geometric information of objects and real-world environments. The capture of geometry in such system is based on the projection of structured light over an object by the projector, and the capture of the modulated scene through the camera. With a calibrated system, the deformation of the projected light caused by the object provides the information needed to reconstruct its geometry through triangulation. The present work describes the development of a high definition camera-projector system (with resolutions up to 1920x1080 and 1280x720). The steps and processes that lead to the reconstruction of geometry, such as camera-projector calibration, color calibration, image processing and triangulation, are detailed. The developed scanner uses the (b; s)-BCSL structured light coding, which employs the projection of a sequence of colored vertical stripes on the scene. This coding scheme offers a flexible number of stripes for projection: the higher the number of stripes, more detailed is the captured geometry. One of the objectives of this work is to estimate the limit number of (b; s)-BCSL stripes possible within the current resolutions of high definition video. This limit number is the one that provides dense geometry reconstruction, and at the same has low error. To evaluate the geometry reconstructed by the scanner for a different number of stripes, we propose a protocol for error measurement. The developed protocol uses planes as objects to measure the quality of geometric reconstruction. From the point cloud generated by the scanner, the equation for the same plane is estimated by least squares. For a fixed number of stripes, five independent scans are made for the plane: each scan leads to one equation; the median plane, estimated from the union of the five clouds of points, is also computed. A distance metric in the projective space is used to evaluate the precision and the accuracy of each number of projected stripes. In addition to the quantitative evaluation, the geometry of many objects are presented for qualitative evaluation. The results show that the limit number of stripes for high resolution video allows high density of points even on surfaces with high color variation.
Marques, Clarissa Codá dos Santos Cavalcanti. "Um sistema de calibração de câmera". Universidade Federal de Alagoas, 2007. http://repositorio.ufal.br/handle/riufal/1051.
Texto completo da fonteFundação de Amparo a Pesquisa do Estado de Alagoas
Um processo de calibração de câmera consiste no problema de determinar as características geométricas digitais e ópticas da câmera a partir de um conjunto de dados iniciais. Este problema pode ser dividido em três etapas: aquisição de dados iniciais, o processo de calibração em si e otimização. Este trabalho propõe o desenvolvimento de uma ferramenta de calibração baseada em uma arquitetura genérica para qualquer processo de calibração. Para este propósito, o sistema apresentado neste trabalho permite a personalização de cada etapa da calibração. A inclusão de novos métodos de calibração é realizada de forma dinâmica, permitindo assim maior integração e flexibilidade entre os módulos do sistema.
Hudec, Jiří. "Vizualizace výrobních podkladů ve firmě IFE Brno". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229956.
Texto completo da fonteLivros sobre o assunto "3d photography"
Ruff, Thomas. Thomas Ruff: [andere Porträts + 3D. Ostfildern: Cantz, 1995.
Encontre o texto completo da fonteAblan, Dan. Digital Photography for 3D Imaging and Animation. New York: John Wiley & Sons, Ltd., 2007.
Encontre o texto completo da fonteChâu, Chân. Thăng Long Hà Nội qua công nghệ 3D =: Thang Long-Hanoi in 3D. Hà Nội?]: Chân Châu, 2010.
Encontre o texto completo da fonte3D and animated lenticular photography: Between Utopia and entertainment. Berlin: Walter De Gruyter GmbH, 2015.
Encontre o texto completo da fonteHanson, Dian. The Big Butt Book 3D: The anaglyph age of bumptious bottoms. Köln: TASCHEN, 2014.
Encontre o texto completo da fonteMagic 3D: Discover the revolutionary world of photographic free-viewing. London: Stanley Paul, 1995.
Encontre o texto completo da fontePhotoshop wan mei 3D yan yi. Beijing: Qing hua da xue chu ban she, 2011.
Encontre o texto completo da fonteMaterials & lighting: Release 3 and4. New York: Delmar Publishers, 1995.
Encontre o texto completo da fonteDobbins, Patria. 3D rendering in computer graphics. Delhi: White Word Publications, 2012.
Encontre o texto completo da fonteSüveg, Ildikó. Reconstruction of 3D building models from aerial images and maps. Delft: Netherlands Geodetic Commission, 2003.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "3d photography"
Negrín Díaz, María Luz. "3D Photography". In Photography in Clinical Medicine, 527–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24544-3_31.
Texto completo da fonteHarila, Virpi, Tuomo Heikkinen, Ville Vuollo, George K. B. Sándor e Pertti Pirttiniemi. "3D photography in cleft patients". In Cleft lip and palate management, 257–62. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119050858.ch18.
Texto completo da fonteTu, Liyun, Antonio R. Porras, Scott Ensel, Deki Tsering, Beatriz Paniagua, Andinet Enquobahrie, Albert Oh, Robert Keating, Gary F. Rogers e Marius George Linguraru. "Intracranial Volume Quantification from 3D Photography". In Lecture Notes in Computer Science, 116–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67543-5_11.
Texto completo da fonteLindsay, Clifford, e Emmanuel Agu. "3D Previsualization Using a Computational Photography Camera". In Advances in Visual Computing, 904–14. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14364-4_87.
Texto completo da fonteFan, Zhencheng, Sen Zhang, Yitong Weng, Guowen Chen e Hongen Liao. "3D Quantitative Evaluation System for Integral Photography based 3D Autostereoscopic Medical Display". In IFMBE Proceedings, 850–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_208.
Texto completo da fonteLacombe, Suzanne, Marius Hack e Shadi Samawi. "Use of Dental Photography in Orthodontic Diagnosis and Treatment Planning". In 3D Diagnosis and Treatment Planning in Orthodontics, 21–42. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57223-5_2.
Texto completo da fonteHou, Zhenjie, Junsheng Huang e Jianhua Zhang. "Research on 3D Object Rounding Photography Systems and Technology". In Information Computing and Applications, 152–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34062-8_20.
Texto completo da fonteZhang, Ben, Ran Ju, Tongwei Ren e Gangshan Wu. "Say Cheese: Personal Photography Layout Recommendation Using 3D Aesthetics Estimation". In Lecture Notes in Computer Science, 13–23. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48896-7_2.
Texto completo da fonteJinji, Zheng, e Wang Yuanqin. "Research on Stereo Image Synthesis Based on Oblique Photography of UAV". In Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology, 287–95. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3863-6_32.
Texto completo da fonteZhang, Shenghao, Zhenyu Wang, Mingtong Zhu e Ronggang Wang. "An End-to-End Real-Time 3D System for Integral Photography Display". In Advances in Multimedia Information Processing – PCM 2018, 246–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00776-8_23.
Texto completo da fonteTrabalhos de conferências sobre o assunto "3d photography"
Strat, Askold V., e Manuel M. Oliveira. "Casual 3D photography". In the SIGGRAPH 2003 conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/965400.965445.
Texto completo da fonteLanman, Douglas, Peter G. Sibley, Daniel Crispell, Yong Zhao e Gabriel Taubin. "Multi-flash 3D photography". In ACM SIGGRAPH 2006 Research posters. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1179622.1179736.
Texto completo da fonteBouguet, J. Y., e P. Perona. "3D photography using shadows". In ISCAS '98 Proceedings of the 1998 IEEE International Symposium on Circuits and Systems. IEEE, 1998. http://dx.doi.org/10.1109/iscas.1998.694540.
Texto completo da fonteMena-Chalco, Jesús P., Ives Macêdo, Luiz Velho e Roberto M. Cesar. "PCA-Based 3D Face Photography". In 2008 XXI Brazilian Symposium on Computer Graphics and Image Processing. IEEE, 2008. http://dx.doi.org/10.1109/sibgrapi.2008.40.
Texto completo da fonteClark, David C., e Myung K. Kim. "Holographic 3D photography under ambient light". In 2014 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2014. http://dx.doi.org/10.1109/ictc.2014.6983352.
Texto completo da fonteWood, Daniel N., Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H. Salesin e Werner Stuetzle. "Surface light fields for 3D photography". In the 27th annual conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/344779.344925.
Texto completo da fonteKawakita, Masahiro, Hisayuki Sasaki, Naoto Okaichi, Hayato Watanabe, Masanori Kano, Tomoyuki Mishina e Jun Arai. "3D TV based on integral photography". In Three-Dimensional Imaging, Visualization, and Display 2018, editado por Jung-Young Son, Bahram Javidi e Osamu Matoba. SPIE, 2018. http://dx.doi.org/10.1117/12.2304800.
Texto completo da fonteKutulakos, Kiriakos N. "Light Transport Analysis for 3D Photography". In Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007). IEEE, 2007. http://dx.doi.org/10.1109/3dim.2007.33.
Texto completo da fonteQiu, Di, Jin Zeng, Zhanghan Ke, Wenxiu Sun e Chengxi Yang. "Towards Geometry Guided Neural Relighting with Flash Photography". In 2020 International Conference on 3D Vision (3DV). IEEE, 2020. http://dx.doi.org/10.1109/3dv50981.2020.00124.
Texto completo da fontePavelka, Karel. "FROM DIGITAL PHOTOGRAPHY TO A VIRTUAL 3D". In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/2.3/s10.016.
Texto completo da fonte