Literatura científica selecionada sobre o tema "3D object discovery"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "3D object discovery".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "3D object discovery"
Grinvald, Margarita, Fadri Furrer, Tonci Novkovic, Jen Jen Chung, Cesar Cadena, Roland Siegwart e Juan Nieto. "Volumetric Instance-Aware Semantic Mapping and 3D Object Discovery". IEEE Robotics and Automation Letters 4, n.º 3 (julho de 2019): 3037–44. http://dx.doi.org/10.1109/lra.2019.2923960.
Texto completo da fonteK, Pramod, e Anjima AP. "Artificial Intelligence in 3D Bio Printing". International Journal for Research in Applied Science and Engineering Technology 10, n.º 6 (30 de junho de 2022): 1577–86. http://dx.doi.org/10.22214/ijraset.2022.44161.
Texto completo da fontePushkarev, A. A., O. V. Zaytceva, M. V. Vavulin e A. Y. Skorobogatova. "3D RECORDING OF A 19-CENTURY OB RIVER SHIP". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (15 de junho de 2016): 377–81. http://dx.doi.org/10.5194/isprs-archives-xli-b5-377-2016.
Texto completo da fontePushkarev, A. A., O. V. Zaytceva, M. V. Vavulin e A. Y. Skorobogatova. "3D RECORDING OF A 19-CENTURY OB RIVER SHIP". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5 (15 de junho de 2016): 377–81. http://dx.doi.org/10.5194/isprsarchives-xli-b5-377-2016.
Texto completo da fonteChen, Yixin, e Qingnan Li. "Vehicle Behavior Discovery and Three-Dimensional Object Detection and Tracking Based on Spatio-Temporal Dependency Knowledge and Artificial Fish Swarm Algorithm". Biomimetics 9, n.º 7 (6 de julho de 2024): 412. http://dx.doi.org/10.3390/biomimetics9070412.
Texto completo da fonteRaheja, Dev. "System Safety in Healthcare". Journal of System Safety 53, n.º 1 (1 de abril de 2017): 12–14. http://dx.doi.org/10.56094/jss.v53i1.98.
Texto completo da fonteAsmatulu, Eylem, Rajakaruna A. D. N. V. Rajakaruna, Balakrishnan Subeshan e M. Nizam Uddin. "3D printed superhydrophobic structures for sustainable manufacturing benefits: An overview". Journal of Management and Engineering Integration 15, n.º 1 (junho de 2022): 45–56. http://dx.doi.org/10.62704/10057/24785.
Texto completo da fonteMiechowicz, Łukasz, Joanna Piątkowska-Małecka, Łukasz Maurycy Stanaszek e Jakub Stępnik. ""Dom zmarłych” z Chodlika, gm. Karczmiska, woj. lubelskie. przyczynek do studiów nad grobami typu alt käbelich". Slavia Antiqua. Rocznik poświęcony starożytnościom słowiańskim, n.º 63 (28 de outubro de 2022): 153–78. http://dx.doi.org/10.14746/sa.2022.63.5.
Texto completo da fonteChoo, Yeon-Seung, Boeun Kim, Hyun-Sik Kim e Yong-Suk Park. "Supervised Contrastive Learning for 3D Cross-Modal Retrieval". Applied Sciences 14, n.º 22 (10 de novembro de 2024): 10322. http://dx.doi.org/10.3390/app142210322.
Texto completo da fontePoux, F., e J. J. Ponciano. "SELF-LEARNING ONTOLOGY FOR INSTANCE SEGMENTATION OF 3D INDOOR POINT CLOUD". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (12 de agosto de 2020): 309–16. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-309-2020.
Texto completo da fonteTeses / dissertações sobre o assunto "3D object discovery"
Kara, Sandra. "Unsupervised object discovery in images and video data". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG019.
Texto completo da fonteThis thesis explores self-supervised learning methods for object localization, commonly known as Object Discovery. Object localization in images and videos is an essential component of computer vision tasks such as detection, re-identification, tracking etc. Current supervised algorithms can localize (and classify) objects accurately but are costly due to the need for annotated data. The process of labeling is typically repeated for each new data or category of interest, limiting their scalability. Additionally, the semantically specialized approaches require prior knowledge of the target classes, restricting their use to known objects. Object Discovery aims to address these limitations by being more generic. The first contribution of this thesis focused on the image modality, investigating how features from self-supervised vision transformers can serve as cues for multi-object discovery. To localize objects in their broadest definition, we extended our focus to video data, leveraging motion cues and targeting the localization of objects that can move. We introduced background modeling and knowledge distillation in object discovery to tackle the background over-segmentation issue in existing object discovery methods and to reintegrate static objects, significantly improving the signal-to-noise ratio in predictions. Recognizing the limitations of single-modality data, we incorporated 3D data through a cross-modal distillation framework. The knowledge exchange between 2D and 3D domains improved alignment on object regions between the two modalities, enabling the use of multi-modal consistency as a confidence criterion
Payet, Nadia. "From shape-based object recognition and discovery to 3D scene interpretation". Thesis, 2011. http://hdl.handle.net/1957/21316.
Texto completo da fonteGraduation date: 2011
Access restricted to the OSU Community at author's request from May 12, 2011 - May 12, 2012
Livros sobre o assunto "3D object discovery"
Arcand, Kimberly, e Megan Watzke. Stars in Your Hand. The MIT Press, 2022. http://dx.doi.org/10.7551/mitpress/13800.001.0001.
Texto completo da fonteCapítulos de livros sobre o assunto "3D object discovery"
Shin, Jiwon, Rudolph Triebel e Roland Siegwart. "Unsupervised 3D Object Discovery and Categorization for Mobile Robots". In Springer Tracts in Advanced Robotics, 61–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29363-9_4.
Texto completo da fonteBoudjoghra, Mohamed El Amine, Jean Lahoud, Hisham Cholakkal, Rao Muhammad Anwer, Salman Khan e Fahad Shahbaz Khan. "Continual Learning and Unknown Object Discovery in 3D Scenes via Self-distillation". In Lecture Notes in Computer Science, 416–31. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-73464-9_25.
Texto completo da fonteHari Priya K e Malathi S. "Efficient Face Mask Recognition System by Using Deep Learning Methodology". In Advances in Parallel Computing. IOS Press, 2021. http://dx.doi.org/10.3233/apc210047.
Texto completo da fonteBarth, E., G. A. Manfrim, L. E. Silva, A. L. R. Correia, C. B. Bennemann, M. F. Martin, J. G. Faria, W. G. Fiirst, S. S. F. Souza e F. P. A. Lima. "3D VIRTUAL TOUR AT IFMT TANGARÁ DA SERRA: APPLICATION OF VIRTUAL REALITY AS A TEACHING TOOL". In Open Science Research XVI, 11–27. Editora Científica Digital, 2024. http://dx.doi.org/10.37885/240717273.
Texto completo da fonteMouhamed, Mourad R., Ashraf Darwish e Aboul Ella Hassanien. "2D and 3D Intelligent Watermarking". In Handbook of Research on Machine Learning Innovations and Trends, 652–69. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2229-4.ch028.
Texto completo da fonteGross, Alan G., e Joseph E. Harmon. "Archival Websites in the Humanities and Sciences". In The Internet Revolution in the Sciences and Humanities. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190465926.003.0009.
Texto completo da fonteKosamiya, Vishvajitsinh, e Jing Wang. "High-k, Low-Loss Ceramic-Thermoplastic Composite Feedstock Filaments for Fused Deposition Modeling of Microwave and mm-Wave Devices". In Additive Manufacturing - Present and Sustainable Future, Materials and Applications [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1008537.
Texto completo da fonteHak, Jonathan W. "Image-Based Evidence as a Didactic Tool". In Image-Based Evidence in International Criminal Prosecutions, 34–58. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780198889533.003.0003.
Texto completo da fonteNakhaei, Mojdeh, Jing Ying Chong, Yunlong Tang e Shahnaz Mansouri. "Plant-Based Sustainable Self-Cleaners in Nanotechnology Era: From Mechanism to Assembling". In Nature-Inspired Self-Cleaning Surfaces in Nanotechnology Era [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.111966.
Texto completo da fonteTrabalhos de conferências sobre o assunto "3D object discovery"
Srivastava, Siddharth, Gaurav Sharma e Brejesh Lall. "Large Scale Novel Object Discovery in 3D". In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018. http://dx.doi.org/10.1109/wacv.2018.00026.
Texto completo da fonteWang, Yuang, Xingyi He, Sida Peng, Haotong Lin, Hujun Bao e Xiaowei Zhou. "AutoRecon: Automated 3D Object Discovery and Reconstruction". In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.02048.
Texto completo da fonteAbbeloos, Wim, Esra Ataer-Cansizoglu, Sergio Caccamo, Yuichi Taguchi e Yukiyasu Domae. "3D Object Discovery and Modeling Using Single RGB-D Images Containing Multiple Object Instances". In 2017 International Conference on 3D Vision (3DV). IEEE, 2017. http://dx.doi.org/10.1109/3dv.2017.00056.
Texto completo da fonteKarpathy, Andrej, Stephen Miller e Li Fei-Fei. "Object discovery in 3D scenes via shape analysis". In 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2013. http://dx.doi.org/10.1109/icra.2013.6630857.
Texto completo da fonteMoosmann, Frank, e Miro Sauerland. "Unsupervised discovery of object classes in 3D outdoor scenarios". In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011. http://dx.doi.org/10.1109/iccvw.2011.6130365.
Texto completo da fonteNie, Neil, Samir Yitzhak Gadre, Kiana Ehsani e Shuran Song. "Structure from Action: Learning Interactions for 3D Articulated Object Structure Discovery". In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023. http://dx.doi.org/10.1109/iros55552.2023.10342135.
Texto completo da fonteLiu, Bingyu, Yuhong Guo, Jianan Jiang, Jian Tang e Weihong Deng. "Multi-view Correlation based Black-box Adversarial Attack for 3D Object Detection". In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447548.3467432.
Texto completo da fonteAljaafreh, Mohammad, Haifa Raja Maamar e Azzedine Boukerche. "An efficient object discovery and selection protocol in 3D streaming-based systems over thin mobile devices". In 2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2013. http://dx.doi.org/10.1109/wcnc.2013.6554935.
Texto completo da fonteNoguchi, Atsuhiro, Umar Iqbal, Jonathan Tremblay, Tatsuya Harada e Orazio Gallo. "Watch It Move: Unsupervised Discovery of 3D Joints for Re-Posing of Articulated Objects". In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.00366.
Texto completo da fonteLee, Jae Hee, Matthias Kerzel, Kyra Ahrens, Cornelius Weber e Stefan Wermter. "What is Right for Me is Not Yet Right for You: A Dataset for Grounding Relative Directions via Multi-Task Learning". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/145.
Texto completo da fonte