Artigos de revistas sobre o tema "3D extruded geometries"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 47 melhores artigos de revistas para estudos sobre o assunto "3D extruded geometries".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Teixeira, João, Cecília Ogliari Schaefer, Lino Maia, Bárbara Rangel, Rui Neto e Jorge Lino Alves. "Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials". Sustainability 14, n.º 7 (28 de março de 2022): 3970. http://dx.doi.org/10.3390/su14073970.
Texto completo da fonteSciannandrone, Daniele, Simone Santandrea e Richard Sanchez. "Optimized tracking strategies for step MOC calculations in extruded 3D axial geometries". Annals of Nuclear Energy 87 (janeiro de 2016): 49–60. http://dx.doi.org/10.1016/j.anucene.2015.05.014.
Texto completo da fonteBuj-Corral, Irene, José Antonio Padilla, Joaquim Minguella-Canela, Lourdes Rodero, Lluís Marco e Elena Xuriguera. "Design of Pastes for Direct Ink Writing of Zirconia Parts with Medical Applications". Key Engineering Materials 958 (5 de outubro de 2023): 157–63. http://dx.doi.org/10.4028/p-izk9dd.
Texto completo da fonteRufo-Martín, Celia, José Díaz-Álvarez e Diego Infante-García. "Influence of PMMA 3D Printing Geometries on the Mechanical Response". Key Engineering Materials 958 (5 de outubro de 2023): 31–39. http://dx.doi.org/10.4028/p-9tor3c.
Texto completo da fonteGraziano, Laurent, Simone Santandrea e Daniele Sciannandrone. "Polynomial axial expansion in the Method of Characteristics for neutron transport in 3D extruded geometries". EPJ Web of Conferences 153 (2017): 06027. http://dx.doi.org/10.1051/epjconf/201715306027.
Texto completo da fonteMitchell, Kellen, Lily Raymond e Yifei Jin. "Material Extrusion Advanced Manufacturing of Helical Artificial Muscles from Shape Memory Polymer". Machines 10, n.º 7 (22 de junho de 2022): 497. http://dx.doi.org/10.3390/machines10070497.
Texto completo da fonteKothavade, Premkumar, Abdullah Kafi, Chaitali Dekiwadia, Viksit Kumar, Santhosh Babu Sukumaran, Kadhiravan Shanmuganathan e Stuart Bateman. "Extrusion 3D Printing of Intrinsically Fluorescent Thermoplastic Polyimide: Revealing an Undisclosed Potential". Polymers 16, n.º 19 (2 de outubro de 2024): 2798. http://dx.doi.org/10.3390/polym16192798.
Texto completo da fonteNikfarjam, F., Y. Cheny e O. Botella. "The LS-STAG immersed boundary/cut-cell method for non-Newtonian flows in 3D extruded geometries". Computer Physics Communications 226 (maio de 2018): 67–80. http://dx.doi.org/10.1016/j.cpc.2018.01.006.
Texto completo da fonteFerro, Paolo, Alberto Fabrizi, Hamada Elsayed e Gianpaolo Savio. "Multi-Material Additive Manufacturing: Creating IN718-AISI 316L Bimetallic Parts by 3D Printing, Debinding, and Sintering". Sustainability 15, n.º 15 (2 de agosto de 2023): 11911. http://dx.doi.org/10.3390/su151511911.
Texto completo da fonteCai, Yuanzhi, e Lei Fan. "An Efficient Approach to Automatic Construction of 3D Watertight Geometry of Buildings Using Point Clouds". Remote Sensing 13, n.º 10 (17 de maio de 2021): 1947. http://dx.doi.org/10.3390/rs13101947.
Texto completo da fonteCharbonneau, André M., Joseph M. Kinsella e Simon D. Tran. "3D Cultures of Salivary Gland Cells in Native or Gelled Egg Yolk Plasma, Combined with Egg White and 3D-Printing of Gelled Egg Yolk Plasma". Materials 12, n.º 21 (24 de outubro de 2019): 3480. http://dx.doi.org/10.3390/ma12213480.
Texto completo da fonteSantandrea, S., D. Sciannandrone, R. Sanchez, L. Mao e L. Graziano. "A Neutron Transport Characteristics Method for 3D Axially Extruded Geometries Coupled with a Fine Group Self-Shielding Environment". Nuclear Science and Engineering 186, n.º 3 (10 de maio de 2017): 239–76. http://dx.doi.org/10.1080/00295639.2016.1273634.
Texto completo da fonteSon, Kyu-Hyon, Jung-Hun Kim, Dong-Eun Kim, Min-Sik Kang, Joo-Heon Song, Moon-Soo Choi, Sang-Mok Chang, Hoon-Kyu Shin e Sung-Woong Han. "Analysis of Correlation Between Contrast and Component of Polylatic Acid Composite for Fused Deposition Modeling 3D Printing". Journal of Nanoscience and Nanotechnology 20, n.º 8 (1 de agosto de 2020): 5107–11. http://dx.doi.org/10.1166/jnn.2020.17835.
Texto completo da fonteMendibil, Xabier, Gaizka Tena, Alaine Duque, Nerea Uranga, Miguel Ángel Campanero e Jesús Alonso. "Direct Powder Extrusion of Paracetamol Loaded Mixtures for 3D Printed Pharmaceutics for Personalized Medicine via Low Temperature Thermal Processing". Pharmaceutics 13, n.º 6 (19 de junho de 2021): 907. http://dx.doi.org/10.3390/pharmaceutics13060907.
Texto completo da fontePariona, Moises Meza. "Simulation by coupling of the level set and thermal methods to extruded material flow in 3D printed polymers". CONTRIBUCIONES A LAS CIENCIAS SOCIALES 16, n.º 12 (20 de dezembro de 2023): 32219–35. http://dx.doi.org/10.55905/revconv.16n.12-188.
Texto completo da fonteLi, Mingyang, Zhixin Liu, Jin Yao Ho e Teck Neng Wong. "Improving Homogeneity of 3D-Printed Cementitious Material Distribution for Radial Toolpath". Fluids 8, n.º 3 (1 de março de 2023): 87. http://dx.doi.org/10.3390/fluids8030087.
Texto completo da fonteBirosz, Márton Tamás, Mátyás Andó e Ferenc Safranyik. "Layer Adhesion Test of Additively Manufactured Pins: A Shear Test". Polymers 14, n.º 1 (24 de dezembro de 2021): 55. http://dx.doi.org/10.3390/polym14010055.
Texto completo da fonteHu, Fuwen, e Tian Li. "An Origami Flexiball-Inspired Metamaterial Actuator and Its In-Pipe Robot Prototype". Actuators 10, n.º 4 (26 de março de 2021): 67. http://dx.doi.org/10.3390/act10040067.
Texto completo da fonteShojaie, Fatemeh, Carmen Ferrero e Isidoro Caraballo. "Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery". Pharmaceutics 15, n.º 9 (21 de setembro de 2023): 2362. http://dx.doi.org/10.3390/pharmaceutics15092362.
Texto completo da fontePapon, Easir Arafat, Anwarul Haque e Muhammad Ali Rob Sharif. "Numerical study for the improvement of bead spreading architecture with modified nozzle geometries in additive manufacturing of polymers". Rapid Prototyping Journal 27, n.º 3 (4 de fevereiro de 2021): 518–29. http://dx.doi.org/10.1108/rpj-05-2019-0142.
Texto completo da fonteDrossel, Welf-Guntram, Jörn Ihlemann, Ralf Landgraf, Erik Oelsch e Marek Schmidt. "Basic Research for Additive Manufacturing of Rubber". Polymers 12, n.º 10 (1 de outubro de 2020): 2266. http://dx.doi.org/10.3390/polym12102266.
Texto completo da fonteGoh, Wei, e Michinao Hashimoto. "Dual Sacrificial Molding: Fabricating 3D Microchannels with Overhang and Helical Features". Micromachines 9, n.º 10 (16 de outubro de 2018): 523. http://dx.doi.org/10.3390/mi9100523.
Texto completo da fonteShuaibu, A., e A. Ahmad. "Effects of heat treatment on tensile properties of 3D-printed short fiber-reinforced composites". Nigerian Journal of Technology 43, n.º 1 (12 de abril de 2024): 56–63. http://dx.doi.org/10.4314/njt.v43i1.8.
Texto completo da fonteBrunčko, M., A. C. Kneissl, L. Gorše e I. Anžel. "Characterization of microstructure and magnetic properties of 3D printed bonded magnets made by fused deposition modeling". Practical Metallography 61, n.º 3 (20 de fevereiro de 2024): 170–81. http://dx.doi.org/10.1515/pm-2024-0013.
Texto completo da fonteReich, Matthew J., Aubrey L. Woern, Nagendra G. Tanikella e Joshua M. Pearce. "Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing". Materials 12, n.º 10 (20 de maio de 2019): 1642. http://dx.doi.org/10.3390/ma12101642.
Texto completo da fonteGolman, Boris, Piotr Skrzypacz e Wittaya Julklang. "Modeling and Numerical Study of Ceramic Paste Extrusion". MATEC Web of Conferences 333 (2021): 02011. http://dx.doi.org/10.1051/matecconf/202133302011.
Texto completo da fonteGolman, Boris, Piotr Skrzypacz e Wittaya Julklang. "Modeling and Numerical Study of Ceramic Paste Extrusion". MATEC Web of Conferences 333 (2021): 02011. http://dx.doi.org/10.1051/matecconf/202133302011.
Texto completo da fonteMazzei Capote, Gerardo Andres, Maria Camila Montoya-Ospina, Zijie Liu, Michael Sabatini Mattei, Boyuan Liu, Aidan P. Delgado, Zongfu Yu, Randall H. Goldsmith e Tim Andreas Osswald. "Compounding a High-Permittivity Thermoplastic Material and Its Applicability in Manufacturing of Microwave Photonic Crystals". Materials 15, n.º 7 (28 de março de 2022): 2492. http://dx.doi.org/10.3390/ma15072492.
Texto completo da fonteKhan, Zainab N., Hamed I. Albalawi, Alexander U. Valle-Pérez, Ali Aldoukhi, Noofa Hammad, Elena Herrera-Ponce de León, Sherin Abdelrahman e Charlotte A. E. Hauser. "From 3D printed molds to bioprinted scaffolds: A hybrid material extrusion and vat polymerization bioprinting approach for soft matter constructs". Materials Science in Additive Manufacturing 1, n.º 1 (28 de março de 2022): 7. http://dx.doi.org/10.18063/msam.v1i1.7.
Texto completo da fonteCostanza, Girolamo, Angelo Del Ferraro e Maria Elisa Tata. "Experimental Set-Up of the Production Process and Mechanical Characterization of Metal Foams Manufactured by Lost-PLA Technique with Different Cell Morphology". Metals 12, n.º 8 (20 de agosto de 2022): 1385. http://dx.doi.org/10.3390/met12081385.
Texto completo da fonteChaurasia, Parul, Richa Singh e Sanjeev Kumar Mahto. "FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink". Biofabrication, 28 de junho de 2024. http://dx.doi.org/10.1088/1758-5090/ad5d18.
Texto completo da fonteSullivan, Anthony, Anil Saigal e Michael A. Zimmerman. "Structure-property-processing relationships in extruded liquid crystal polymer film". Polymers and Polymer Composites, 7 de abril de 2021, 096739112110070. http://dx.doi.org/10.1177/09673911211007019.
Texto completo da fonteKodali, Deepa, Chibu O. Umerah, Mohanad O. Idrees, S. Jeelani e Vijaya K. Rangari. "Fabrication and characterization of polycarbonate-silica filaments for 3D printing applications". Journal of Composite Materials, 2 de setembro de 2021, 002199832110447. http://dx.doi.org/10.1177/00219983211044748.
Texto completo da fonteDávila, José Luis, Bruna Maria Manzini, Marcos Akira d'Ávila e Jorge Vicente Lopes da Silva. "Open-source syringe extrusion head for shear-thinning materials 3D printing". Rapid Prototyping Journal, 14 de março de 2022. http://dx.doi.org/10.1108/rpj-09-2021-0245.
Texto completo da fonteKarthikeyan, Leena, Suraj Sudhi, Tushar Shriram Bhatt, Mani Ganesan, Panthaplackal Bhaskaran Soumyamol, Jayalatha Thankarajan, Suchithra Cheriyan e Dona Mathew. "Poly(ether ether ketone)s processed through extrusion-machining and 3D printing: A comparative study on mechanical, thermal and fracture properties at ambient and cryogenic environments". Journal of Elastomers & Plastics, 25 de setembro de 2020, 009524432096183. http://dx.doi.org/10.1177/0095244320961830.
Texto completo da fonteOvy, S. M. Al Islam, Gianni Stano, Gianluca Percoco, Matteo Cianchetti e Yonas Tadesse. "Inexpensive monolithic additive manufacturing of silicone structures for bio-inspired soft robotic systems". Engineering Research Express, 23 de janeiro de 2023. http://dx.doi.org/10.1088/2631-8695/acb587.
Texto completo da fonteSchäfke, Florian Patrick, Frederic Timmann, Christian Klose, André Hürkamp, Klaus Dröder e Hans Jürgen Maier. "Development of EN AW-6082 Metal Foams and Stochastic Foam Modeling for the Individualization of Extruded Profiles". Journal of Materials Engineering and Performance, 20 de dezembro de 2023. http://dx.doi.org/10.1007/s11665-023-09031-9.
Texto completo da fonteKim, Jihyun, Seol‐Ha Jeong, Brendan Craig Thibault, Javier Alejandro Lozano Soto, Hiroyuki Tetsuka, Surya Varchasvi Devaraj, Estefania Riestra et al. "Large Scale Ultrafast Manufacturing of Wireless Soft Bioelectronics Enabled by Autonomous Robot Arm Printing Assisted by a Computer Vision‐Enabled Guidance System for Personalized Wound Healing". Advanced Healthcare Materials, 15 de novembro de 2024. http://dx.doi.org/10.1002/adhm.202401735.
Texto completo da fonteCai, Betty, David Kilian, Sadegh Ghorbani, Julien Roth, Alexis J. Seymour, Lucia Giulia Brunel, Daniel Ramos Mejia et al. "One-step bioprinting of endothelialized, self-supporting arterial and venous networks". Biofabrication, 16 de janeiro de 2025. https://doi.org/10.1088/1758-5090/adab26.
Texto completo da fonteNayak, Vasudev Vivekanand, Vijayavenkataraman Sanjairaj, Rakesh Kumar Behera, James E. Smay, Nikhil Gupta, Paulo G. Coelho e Lukasz Witek. "Direct inkjet writing of polylactic acid/β‐tricalcium phosphate composites for bone tissue regeneration: A proof‐of‐concept study". Journal of Biomedical Materials Research Part B: Applied Biomaterials 112, n.º 4 (23 de março de 2024). http://dx.doi.org/10.1002/jbm.b.35402.
Texto completo da fonteTagliavini, Giorgia, Federico Solari e Roberto Montanari. "CFD Simulation of a Co-rotating Twin-screw Extruder: Validation of a Rheological Model for a Starch-Based Dough for Snack Food". International Journal of Food Engineering 14, n.º 2 (6 de setembro de 2017). http://dx.doi.org/10.1515/ijfe-2017-0116.
Texto completo da fonteIdogava, Henrique Takashi, Daniel Marcos Souza do Couto, Leonardo Santana, Jorge Lino Alves e Zilda Castro Silveira. "AltPrint: new filling and slicing process planning based on deposited material with geometry variation". Rapid Prototyping Journal, 12 de maio de 2023. http://dx.doi.org/10.1108/rpj-06-2022-0208.
Texto completo da fonteBierach, Christopher, Alexsander Alberts Coelho, Michela Turrin, Serdar Asut e Ulrich Knaack. "Wood-based 3D printing: potential and limitation to 3D print building elements with cellulose & lignin". Architecture, Structures and Construction, 15 de março de 2023. http://dx.doi.org/10.1007/s44150-023-00088-7.
Texto completo da fonteEhrler, Julian, Julian Kattinger, Mike Kornely e Marc Kreutzbruck. "Inline CT-Analysis of the Melting Area during Fused Filament Fabrication". e-Journal of Nondestructive Testing 29, n.º 6 (junho de 2024). http://dx.doi.org/10.58286/29922.
Texto completo da fonteEhrler, Julian, Mike Kornely, Julian Kattinger, Marc Kreutzbruck e Christian Bonten. "CT-Analysis of the Melting Area in the Fused Filament Fabrication Process". Research and Review Journal of Nondestructive Testing 1, n.º 1 (agosto de 2023). http://dx.doi.org/10.58286/28063.
Texto completo da fonteCurmi, Albert, Arif Rochman e Alfred Gatt. "Screw extrusion additive manufacturing of thermoplastic polyolefin elastomer". Progress in Additive Manufacturing, 15 de junho de 2024. http://dx.doi.org/10.1007/s40964-024-00696-9.
Texto completo da fonteMele, Mattia, Michele Ricciarelli e Giampaolo Campana. "3D printing of clay paste enhanced by scrap polymer from powder bed processes". Rapid Prototyping Journal ahead-of-print, ahead-of-print (2 de setembro de 2021). http://dx.doi.org/10.1108/rpj-07-2020-0179.
Texto completo da fonte