Artigos de revistas sobre o tema "22~nm"

Siga este link para ver outros tipos de publicações sobre o tema: 22~nm.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "22~nm".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Bloomstein, T. M., Michael F. Marchant, Sandra Deneault, Dennis E. Hardy e Mordechai Rothschild. "22-nm immersion interference lithography". Optics Express 14, n.º 14 (2006): 6434. http://dx.doi.org/10.1364/oe.14.006434.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Sadana, Devendra, Stephen W. Bedell, J. P. De Souza, Y. Sun, E. Kiewra, A. Reznicek, T. Adams et al. "CMOS Scaling Beyond 22 nm Node". ECS Transactions 19, n.º 5 (18 de dezembro de 2019): 267–74. http://dx.doi.org/10.1149/1.3119551.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Buengener, Ralf, Carol Boye, Bryan N. Rhoads, Sang Y. Chong, Charu Tejwani, Sean D. Burns, Andrew D. Stamper et al. "Process Window Centering for 22 nm Lithography". IEEE Transactions on Semiconductor Manufacturing 24, n.º 2 (maio de 2011): 165–72. http://dx.doi.org/10.1109/tsm.2011.2106807.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Parker, Matthew. "A sub-terahertz transceiver in 22 nm FinFET". Nature Electronics 5, n.º 3 (março de 2022): 126. http://dx.doi.org/10.1038/s41928-022-00741-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Kurd, Nasser, Muntaquim Chowdhury, Edward Burton, Thomas P. Thomas, Christopher Mozak, Brent Boswell, Praveen Mosalikanti et al. "Haswell: A Family of IA 22 nm Processors". IEEE Journal of Solid-State Circuits 50, n.º 1 (janeiro de 2015): 49–58. http://dx.doi.org/10.1109/jssc.2014.2368126.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Huang, Ru, HanMing Wu, JinFeng Kang, DeYuan Xiao, XueLong Shi, Xia An, Yu Tian et al. "Challenges of 22 nm and beyond CMOS technology". Science in China Series F: Information Sciences 52, n.º 9 (setembro de 2009): 1491–533. http://dx.doi.org/10.1007/s11432-009-0167-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Shiotani, Hideaki, Shota Suzuki, Dong Gun Lee, Patrick Naulleau, Yasuyuki Fukushima, Ryuji Ohnishi, Takeo Watanabe e Hiroo Kinoshita. "Dual Grating Interferometric Lithography for 22-nm Node". Japanese Journal of Applied Physics 47, n.º 6 (20 de junho de 2008): 4881–85. http://dx.doi.org/10.1143/jjap.47.4881.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Seifert, N., B. Gill, S. Jahinuzzaman, J. Basile, V. Ambrose, Quan Shi, R. Allmon e A. Bramnik. "Soft Error Susceptibilities of 22 nm Tri-Gate Devices". IEEE Transactions on Nuclear Science 59, n.º 6 (dezembro de 2012): 2666–73. http://dx.doi.org/10.1109/tns.2012.2218128.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Zhang, Bo, Min Zhang e Tianhong Cui. "Low-cost shrink lithography with sub-22 nm resolution". Applied Physics Letters 100, n.º 13 (26 de março de 2012): 133113. http://dx.doi.org/10.1063/1.3697836.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Li, Zongru, Christopher Jarrett Elash, Chen Jin, Li Chen, Jiesi Xing, Zhiwu Yang e Shuting Shi. "Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies". Electronics 11, n.º 11 (1 de junho de 2022): 1757. http://dx.doi.org/10.3390/electronics11111757.

Texto completo da fonte
Resumo:
Total ionizing dose (TID) effects from Co-60 gamma ray and heavy ion irradiation were studied at the 22-nm FD SOI technology node and compared with the testing results from the 28-nm FD SOI technology. Ring oscillators (RO) designed with inverters, NAND2, and NOR2 gates were used to observe the output frequency drift and current draw. Experimental results show a noticeable increased device current draw and decreases in RO frequencies where NOR2 ROs have the most degradation. As well, the functionality of a 256 kb SRAM block and shift-register chains were evaluated during C0-60 irradiation. SRAM functionality deteriorated at 325 krad(Si) of the total dosage, while the FF chains remained functional up to 1 Mrad(Si). Overall, the 22-nm FD SOI results show better resilience to TID effects compared to the 28-nm FD SOI technology node.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Seaberg, Matthew D., Daniel E. Adams, Ethan L. Townsend, Daisy A. Raymondson, William F. Schlotter, Yanwei Liu, Carmen S. Menoni et al. "Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source". Optics Express 19, n.º 23 (25 de outubro de 2011): 22470. http://dx.doi.org/10.1364/oe.19.022470.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Jeong-Dong Choe, Chang-Sub Lee, Sung-Ho Kim, Sung-Min Kim, Shin-Ae Lee, Ju-Won Lee, Y. G. Shin, Donggun Park e Kinam Kim. "A 22-nm damascene-gate MOSFET fabrication with 0.9-nm EOT and local channel implantation". IEEE Electron Device Letters 24, n.º 3 (março de 2003): 195–97. http://dx.doi.org/10.1109/led.2003.811401.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Brewer, Rachel M., En Xia Zhang, Mariia Gorchichko, Peng Fei Wang, Jonathan Cox, Steven L. Moran, Dennis R. Ball et al. "Total Ionizing Dose Responses of 22-nm FDSOI and 14-nm Bulk FinFET Charge-Trap Transistors". IEEE Transactions on Nuclear Science 68, n.º 5 (maio de 2021): 677–86. http://dx.doi.org/10.1109/tns.2021.3059594.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Gao, Ping, Na Yao, Changtao Wang, Zeyu Zhao, Yunfei Luo, Yanqin Wang, Guohan Gao, Kaipeng Liu, Chengwei Zhao e Xiangang Luo. "Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens". Applied Physics Letters 106, n.º 9 (2 de março de 2015): 093110. http://dx.doi.org/10.1063/1.4914000.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Cao Zhen, 曹振, 李艳秋 Li Yanqiu e 刘菲 Liu Fei. "Manufacturable Design of 16~22 nm Extreme Ultraviolet Lithographic Objective". Acta Optica Sinica 33, n.º 9 (2013): 0922005. http://dx.doi.org/10.3788/aos201333.0922005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Chakraborty, Wriddhi, Khandker Akif Aabrar, Jorge Gomez, Rakshith Saligram, Arijit Raychowdhury, Patrick Fay e Suman Datta. "Characterization and Modeling of 22 nm FDSOI Cryogenic RF CMOS". IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 7, n.º 2 (dezembro de 2021): 184–92. http://dx.doi.org/10.1109/jxcdc.2021.3131144.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Chung, Shine C., Wen-Kuang Fang e Fang-Hua Chen. "A 4Kx8 Innovative Fuse OTP on 22-nm FD-SOI". IEEE Journal of the Electron Devices Society 7 (2019): 837–45. http://dx.doi.org/10.1109/jeds.2019.2922711.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Xiaobin Wang, Yiran Chen, Hai Li, D. Dimitrov e H. Liu. "Spin Torque Random Access Memory Down to 22 nm Technology". IEEE Transactions on Magnetics 44, n.º 11 (novembro de 2008): 2479–82. http://dx.doi.org/10.1109/tmag.2008.2002386.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Rusu, Stefan, Harry Muljono, David Ayers, Simon Tam, Wei Chen, Aaron Martin, Shenggao Li, Sujal Vora, Raj Varada e Eddie Wang. "A 22 nm 15-Core Enterprise Xeon® Processor Family". IEEE Journal of Solid-State Circuits 50, n.º 1 (janeiro de 2015): 35–48. http://dx.doi.org/10.1109/jssc.2014.2368933.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Fukushima, Yasuyuki, Yuya Yamaguchi, Takafumi Iguchi, Takuro Urayama, Tetsuo Harada, Takeo Watanabe e Hiroo Kinoshita. "Development of interference lithography for 22 nm node and below". Microelectronic Engineering 88, n.º 8 (agosto de 2011): 1944–47. http://dx.doi.org/10.1016/j.mee.2011.02.076.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Xie, Peng, e Bruce W. Smith. "Scanning interference evanescent wave lithography for sub-22-nm generations". Journal of Micro/Nanolithography, MEMS, and MOEMS 12, n.º 1 (11 de fevereiro de 2013): 013011. http://dx.doi.org/10.1117/1.jmm.12.1.013011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Naulleau, Patrick P., Christopher N. Anderson, Lorie-Mae Baclea-an, Paul Denham, Simi George, Kenneth A. Goldberg, Michael Goldstein et al. "Pushing extreme ultraviolet lithography development beyond 22 nm half pitch". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, n.º 6 (2009): 2911. http://dx.doi.org/10.1116/1.3237092.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Mohsen, Ali, Adnan Harb, Nathalie Deltimple e Abraham Serhane. "28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide—Part I". Circuits and Systems 08, n.º 04 (2017): 93–110. http://dx.doi.org/10.4236/cs.2017.84006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Mohsen, Ali, Adnan Harb, Nathalie Deltimple e Abraham Serhane. "28-nm UTBB FD-SOI vs. 22-nm Tri-Gate FinFET Review: A Designer Guide—Part II". Circuits and Systems 08, n.º 05 (2017): 111–21. http://dx.doi.org/10.4236/cs.2017.85007.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Jeevan, B., e K. Sivani. "Design of 0.8V, 22 nm DG-FinFET based efficient VLSI multiplexers". Microelectronics Journal 113 (julho de 2021): 105059. http://dx.doi.org/10.1016/j.mejo.2021.105059.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Freeman, G., P. Chang, E. R. Engbrecht, K. J. Giewont, D. F. Hilscher, M. Lagus, T. J. McArdle et al. "Performance-optimized gate-first 22-nm SOI technology with embedded DRAM". IBM Journal of Research and Development 59, n.º 1 (janeiro de 2015): 5:1–5:14. http://dx.doi.org/10.1147/jrd.2014.2380252.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Xu, Peng, Yinghua Piao, Liang Ge, Cheng Hu, Lun Zhu, Zhiwei Zhu, David Wei Zhang e Dongping Wu. "Investigation of Novel Junctionless MOSFETs for Technology Node Beyond 22 nm". ECS Transactions 44, n.º 1 (15 de dezembro de 2019): 33–39. http://dx.doi.org/10.1149/1.3694293.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Schmidt, Matthias, Martin J. Suess, Angelica D. Barros, Richard Geiger, Hans Sigg, Ralph Spolenak e Renato A. Minamisawa. "A Patterning-Based Strain Engineering for Sub-22 nm Node FinFETs". IEEE Electron Device Letters 35, n.º 3 (março de 2014): 300–302. http://dx.doi.org/10.1109/led.2014.2300865.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Sze-Ann Wu, Yi-Lung Cheng, Chia-Yang Wu e Wen-Hsi Lee. "A Study of Cu/CuMn Barrier for 22-nm Semiconductor Manufacturing". IEEE Transactions on Device and Materials Reliability 14, n.º 1 (março de 2014): 286–90. http://dx.doi.org/10.1109/tdmr.2013.2262525.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Holmes, Steven. "22-nm-node technology active-layer patterning for planar transistor devices". Journal of Micro/Nanolithography, MEMS, and MOEMS 9, n.º 1 (1 de janeiro de 2010): 013001. http://dx.doi.org/10.1117/1.3302125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Park, Joon-Min, Dai-Gyoung Kim, Joo-Yoo Hong, Ilsin An e Hye-Keun Oh. "Anisotropic Resist Reflow Process Simulation for 22 nm Elongated Contact Holes". Japanese Journal of Applied Physics 47, n.º 6 (20 de junho de 2008): 4940–43. http://dx.doi.org/10.1143/jjap.47.4940.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Kozawa, Takahiro, Seiichi Tagawa, Julius Joseph Santillan e Toshiro Itani. "Quencher Effects at 22 nm Pattern Formation in Chemically Amplified Resists". Japanese Journal of Applied Physics 47, n.º 7 (11 de julho de 2008): 5404–8. http://dx.doi.org/10.1143/jjap.47.5404.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Brown, J., e Z. Zuo. "Renal receptors for atrial and C-type natriuretic peptides in the rat". American Journal of Physiology-Renal Physiology 263, n.º 1 (1 de julho de 1992): F89—F96. http://dx.doi.org/10.1152/ajprenal.1992.263.1.f89.

Texto completo da fonte
Resumo:
Receptors for alpha-atrial natriuretic peptide (alpha-ANP) and C-type natriuretic peptide [CNP-(1-22)] were quantified in kidneys from adult Wistar rats by in vitro autoradiography. 125I-labeled alpha-ANP (100 pM) bound reversibly to glomeruli, outer medullary vasa recta, and inner medulla with an apparent dissociation constant (Kd) of 3–6 nM. The presence of 10 microM des-[Gln18,Ser19,Gly20,Leu21,Gly22]ANP-(4– 23) (C-ANP), a specific ligand of the ANPR-C subtype of alpha-ANP receptor, inhibited approximately 50% of the glomerular binding of 125I-alpha-ANP, and this moiety of glomerular binding was also inhibited by CNP-(1–22) with an apparent inhibitory constant (Ki) of 10.47 +/- 7.59 nM. C-ANP and CNP-(1–22) showed little affinity for the medullary binding sites of alpha-ANP. 125I-[Tyr0]CNP-(1–22) (110 pM) bound solely to glomeruli and was competitively displaced by increasing concentrations of [Tyr0]CNP-(1–22) with an apparent Kd of 1.42 +/- 0.48 nM. Binding of increasing concentrations (25 pM to 1 nM) of 125I-[Tyr0]CNP-(1–22) in the presence or absence of 1 microM [Tyr0]CNP-(1–22) also demonstrated a high affinity (Kd of 0.41 +/- 0.07 nM) for the glomerular binding of 125I-[Tyr0]CNP-(1–22). Bound 125I-[Tyr0]CNP-(1–22) could be displaced by excess alpha-ANP and excess CNP-(1–22), both with high affinities. The glomerular binding of 125I-[Tyr0]CNP-(1–22) was also prevented by 10 microM C-ANP. Guanosine 3',5'-cyclic monophosphate produced by isolated glomeruli was measured by radioimmunoassay.(ABSTRACT TRUNCATED AT 250 WORDS)
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Mayeda, Jill, Donald Y. C. Lie e Jerry Lopez. "Broadband Millimeter-Wave 5G Power Amplifier Design in 22 nm CMOS FD-SOI and 40 nm GaN HEMT". Electronics 11, n.º 5 (23 de fevereiro de 2022): 683. http://dx.doi.org/10.3390/electronics11050683.

Texto completo da fonte
Resumo:
Three millimeter-wave (mm-Wave) power amplifiers (PAs) that cover the key 5G FR2 band of 24.25 to 43.5 GHz are designed in two different state-of-the-art device technologies and are presented in this work. First, a single-ended broadband PA that employs a third-order input matching network is designed in a 40 nm GaN/SiC HEMT (High Electron Mobility Transistor) technology. Good agreement between the measurement and post-layout parasitic extracted (PEX) electromagnetic (EM) simulation data is observed, and it achieves a measured 3-dB BW (bandwidth) of 18.0–40.3 GHz and >20% maximum PAE (power-added-efficiency) across the entire 20–44 GHz band. Expanding upon this measured design, a differential broadband GaN PA that utilizes neutralization capacitors is designed, laid out, and EM simulated. Simulation results indicate that this PA achieves 3-dB BW 20.1–44.3 GHz and maximum PAE > 23% across this range. Finally, a broadband mm-Wave differential CMOS PA using a cascode topology with RC feedback and neutralization capacitors is designed in a 22 nm FD-SOI (fully depleted silicon-on-insulator) CMOS technology. This PA achieves an outstanding measured 3-dB BW of 19.1–46.5 GHz and >12.5% maximum PAE across the entire frequency band. This CMOS PA as well as the single-ended GaN PA are tested with 256-QAM-modulated 5G NR signals with an instantaneous signal BW of 50/100/400/9 × 100 MHz at a PAPR (peak-to-average-power ratio) of 8 dB. The data exhibit impressive linearity vs. POUT trade-off and useful insights on CMOS vs. GaN PA linearity degradation against an increasing BW for potential mm-Wave 5G applications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Wurm, Stefan. "EUV Lithography Development and Research Challenges for the 22 nm Half-pitch". Journal of Photopolymer Science and Technology 22, n.º 1 (2009): 31–42. http://dx.doi.org/10.2494/photopolymer.22.31.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Das, S., R. Yu, K. Cherkaoui, P. Razavi e S. Barraud. "Performance of 22 nm Tri-Gate Junctionless Nanowire Transistors at Elevated Temperatures". ECS Solid State Letters 2, n.º 8 (23 de maio de 2013): Q62—Q65. http://dx.doi.org/10.1149/2.004308ssl.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Benk, Markus P., Kenneth A. Goldberg, Antoine Wojdyla, Christopher N. Anderson, Farhad Salmassi, Patrick P. Naulleau e Michael Kocsis. "Demonstration of 22-nm half pitch resolution on the SHARP EUV microscope". Journal of Vacuum Science & Technology B 33, n.º 6 (novembro de 2015): 06FE01. http://dx.doi.org/10.1116/1.4929509.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Baklanov, Mikhail R., Evgeny A. Smirnov e Larry Zhao. "Ultra Low Dielectric Constant Materials for 22 nm Technology Node and Beyond". ECS Transactions 35, n.º 4 (16 de dezembro de 2019): 717–28. http://dx.doi.org/10.1149/1.3572315.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Seo, Soon-Cheon, Chih-Chao Yang, Miaomiao Wang, Frederic Monsieur, Lahir Adam, Jeffrey B. Johnson, Dave Horak et al. "Copper Contact for 22 nm and Beyond: Device Performance and Reliability Evaluation". IEEE Electron Device Letters 31, n.º 12 (dezembro de 2010): 1452–54. http://dx.doi.org/10.1109/led.2010.2078483.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Yan, H., A. J. Bergren, R. McCreery, M. L. Della Rocca, P. Martin, P. Lafarge e J. C. Lacroix. "Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions". Proceedings of the National Academy of Sciences 110, n.º 14 (18 de março de 2013): 5326–30. http://dx.doi.org/10.1073/pnas.1221643110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Younkin, Todd R. "Extreme-ultraviolet secondary electron blur at the 22-nm half pitch node". Journal of Micro/Nanolithography, MEMS, and MOEMS 10, n.º 3 (1 de julho de 2011): 033004. http://dx.doi.org/10.1117/1.3607429.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Wu, Banqiu. "Next-generation lithography for 22 and 16 nm technology nodes and beyond". Science China Information Sciences 54, n.º 5 (maio de 2011): 959–79. http://dx.doi.org/10.1007/s11432-011-4227-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Kozawa, Takahiro, Seiichi Tagawa, Julius Joseph Santillan, Minoru Toriumi e Toshiro Itani. "Feasibility Study of Chemically Amplified Extreme Ultraviolet Resists for 22 nm Fabrication". Japanese Journal of Applied Physics 47, n.º 6 (13 de junho de 2008): 4465–68. http://dx.doi.org/10.1143/jjap.47.4465.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kim, Eugene, Andrea Steinbrück, Maria Teresa Buscaglia, Vincenzo Buscaglia, Thomas Pertsch e Rachel Grange. "Second-Harmonic Generation of Single BaTiO3 Nanoparticles down to 22 nm Diameter". ACS Nano 7, n.º 6 (24 de maio de 2013): 5343–49. http://dx.doi.org/10.1021/nn401198g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Tawarayama, Kazuo, Hajime Aoyama, Kentaro Matsunaga, Shunko Magoshi, Yukiyasu Arisawa e Taiga Uno. "Resolution Enhancement for Beyond-22-nm Node Using Extreme Ultraviolet Exposure Tool". Japanese Journal of Applied Physics 49, n.º 6 (21 de junho de 2010): 06GD01. http://dx.doi.org/10.1143/jjap.49.06gd01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Acri, G., F. Podevin, E. Pistono, L. Boccia, N. Corrao, T. Lim, E. N. Isa e P. Ferrari. "A Millimeter-Wave Miniature Branch-Line Coupler in 22-nm CMOS Technology". IEEE Solid-State Circuits Letters 2, n.º 6 (junho de 2019): 45–48. http://dx.doi.org/10.1109/lssc.2019.2930197.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Huang, Mingjing, e Xiaoyong He. "A Reconfigurable Analog Baseband for Multistandard Wireless Receivers in 22-nm CMOS". Journal of Physics: Conference Series 2613, n.º 1 (1 de outubro de 2023): 012024. http://dx.doi.org/10.1088/1742-6596/2613/1/012024.

Texto completo da fonte
Resumo:
Abstract This paper presents a low noise, and high linearity reconfigurable receiver (RX) analog baseband (ABB) with tunable bandwidth (BW) and gain for multi-standard applications. The designed ABB consists of a programmable gain amplifier (PGA) and a second-order active RC low-pass filter (LPF) with cutoff frequency range from 0.7 MHz–10 MHz, whereas the gain could be tuned between 0 dB and 49 dB. The proposed ABB is implemented in 22 nm CMOS process. The post-simulation results show that the current consumption is 3.36 mA from 1 V supply and the area occupies 571×328 μm 2. The ABB achieves 42.8 dBm in-band third-order harmonic intercept point (IIP3). The spurious-free dynamic range (SFDR) and in-band total harmonic distortion (THD) is 83.2 dBc and is -83.1 dB, respectively. The input referred in-band integrated noise (IRN) is 144.8 μVrms . A digital DCOC is used to calibrate the output DC level.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Haarig, Moritz, Albert Ansmann, Holger Baars, Cristofer Jimenez, Igor Veselovskii, Ronny Engelmann e Dietrich Althausen. "Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke". Atmospheric Chemistry and Physics 18, n.º 16 (20 de agosto de 2018): 11847–61. http://dx.doi.org/10.5194/acp-18-11847-2018.

Texto completo da fonte
Resumo:
Abstract. We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5–6.5 km height and in a stratospheric layer from 15–16 km height during a record-breaking smoke event on 22 August 2017. Three polarization/Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths (<3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22 % at 355 nm and 18 % at 532 nm and a comparably low value of 4 % at 1064 nm. The lidar ratios were 40–45 sr (355 nm), 65–80 sr (532 nm), and 80–95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius >500 nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350–400 nm. The effective particle radius was 0.32 µm. The tropospheric smoke particles were much smaller (effective radius of 0.17 µm). Mass concentrations were of the order of 5.5 µg m−3 (tropospheric layer) and 40 µg m−3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Ibe, Eishi, Hitoshi Taniguchi, Yasuo Yahagi, Ken-ichi Shimbo e Tadanobu Toba. "Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule". IEEE Transactions on Electron Devices 57, n.º 7 (julho de 2010): 1527–38. http://dx.doi.org/10.1109/ted.2010.2047907.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Eitan, Ro'ee, e Ariel Cohen. "Untrimmed Low-Power Thermal Sensor for SoC in 22 nm Digital Fabrication Technology". Journal of Low Power Electronics and Applications 4, n.º 4 (9 de dezembro de 2014): 304–16. http://dx.doi.org/10.3390/jlpea4040304.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia