Literatura científica selecionada sobre o tema "1D quantum gas"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "1D quantum gas".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "1D quantum gas"
Guan, Xiwen. "Critical phenomena in one dimension from a Bethe ansatz perspective". International Journal of Modern Physics B 28, n.º 24 (5 de agosto de 2014): 1430015. http://dx.doi.org/10.1142/s0217979214300151.
Texto completo da fonteLaburthe Tolra, B., K. M. O'Hara, J. H. Huckans, M. Anderlini, J. V. Porto, S. L. Rolston e W. D. Phillips. "Study of a 1D interacting quantum Bose gas". Journal de Physique IV (Proceedings) 116 (outubro de 2004): 227–32. http://dx.doi.org/10.1051/jp4:2004116010.
Texto completo da fonteSato, Jun, Rina Kanamoto, Eriko Kaminishi e Tetsuo Deguchi. "Quantum states of dark solitons in the 1D Bose gas". New Journal of Physics 18, n.º 7 (11 de julho de 2016): 075008. http://dx.doi.org/10.1088/1367-2630/18/7/075008.
Texto completo da fonteGuan, Xi-Wen, e Feng He. "Professor Chen Ping Yang’s early significant contributions to mathematical physics". International Journal of Modern Physics B 33, n.º 06 (10 de março de 2019): 1930002. http://dx.doi.org/10.1142/s0217979219300020.
Texto completo da fonteKaminishi, Eriko, Jun Sato e Tetsuo Deguchi. "Recurrence Time in the Quantum Dynamics of the 1D Bose Gas". Journal of the Physical Society of Japan 84, n.º 6 (15 de junho de 2015): 064002. http://dx.doi.org/10.7566/jpsj.84.064002.
Texto completo da fonteKinjo, Kayo, Eriko Kaminishi, Takashi Mori, Jun Sato, Rina Kanamoto e Tetsuo Deguchi. "Quantum Dark Solitons in the 1D Bose Gas: From Single to Double Dark-Solitons". Universe 8, n.º 1 (21 de dezembro de 2021): 2. http://dx.doi.org/10.3390/universe8010002.
Texto completo da fonteMarino, E. C., e Flávio I. Takakura. "Massive Quantum Vortex Excitations in a Pure Gauge Abelian Theory in 2 + 1D". International Journal of Modern Physics A 12, n.º 23 (20 de setembro de 1997): 4155–65. http://dx.doi.org/10.1142/s0217751x97002279.
Texto completo da fonteBouneb, I., e F. Kerrour. "Nanometric Modelization of Gas Structure, Multidimensional using COMSOL Software". International Journal of Electrical and Computer Engineering (IJECE) 8, n.º 4 (1 de agosto de 2018): 2014. http://dx.doi.org/10.11591/ijece.v8i4.pp2014-2020.
Texto completo da fontePan, Jun, Hao Shen e Sanjay Mathur. "One-Dimensional SnO2Nanostructures: Synthesis and Applications". Journal of Nanotechnology 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/917320.
Texto completo da fonteKaminishi, Eriko, Jun Sato e Tetsuo Deguchi. "Exact quantum dynamics of yrast states in the finite 1D Bose gas". Journal of Physics: Conference Series 497 (9 de abril de 2014): 012030. http://dx.doi.org/10.1088/1742-6596/497/1/012030.
Texto completo da fonteTeses / dissertações sobre o assunto "1D quantum gas"
Lee, Robert. "Application of quantum Monte Carlo methods to excitonic and electronic systems". Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239379.
Texto completo da fonteDubois, Léa. "Dynamique hors d'équilibre d'un gaz de Bosons unidimensionnel étudiée via la mesure spatialement résolue de la distribution des quasiparticules". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP066.
Texto completo da fonteThis manuscript describes theoretical and experimental studies on characterizing one dimensionnal (1D) bose gas. To produce such a system, a Rubidium gas est trapped in a very transversally confining magnetic potential produced by an atom chip. Contrary to thermodynamic systems reaching an equilibrium described by several macroscopic parameters (pressure, temperature), this system relaxes towards a more complex state described by a function called the rapidity distribution. This function can be accessed experimentally : the rapidity distribution corresponds to the asymptotic atomic velocity distribution after a 1D expansion of the atoms. This quantity can also be extracted by studying the 1D expansion with the Generalized Hydrodynamic, an emerging theory with a lot of interest recently, specially conceived for studying these systems.A first study detailed in this manuscript consisted in characterizing 1D expansion of the gas. The evolution of the density profile and the evolution of phase fluctuations were analyzed and found to be compatible with theoretical predictions. A second project involved adding a spatial selection tool to produce non-equilibrium situations and to locally probe the rapidity distribution of the system. These measurements were performed on initial equilibrium and out of equilibrium situations. They are well understood with the predictions of Generalized Hydrodynamics
Utz, Yannic. "The Effect of In-Chain Impurities on 1D Antiferromagnets". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217959.
Texto completo da fonteJiménez, Martín Daniel. "Comportamiento bosónico de pares de fermiones con interacción de contacto 1D". Bachelor's thesis, 2019. http://hdl.handle.net/11086/15290.
Texto completo da fontePara determinar cuán bosónico es el comportamiento de pares de fermiones distinguibles interactuantes con interacción de contacto en un sistema unidimensional continuo se propusieron dos modelos: partículas libres y partículas en una trampa armónica. Para cada uno de ellos se determinó de manera analítica el estado fundamental de un sólo par mediante la resolución de la ecuación de Schrödinguer independiente del tiempo. A partir de dicho estado, se extrajo información acerca del comportamiento bosónico del par interactuante en función de la intensidad de la interacción. Se estudió el régimen atractivo para ambos modelos y también el régimen repulsivo para partículas en una trampa armónica. En el régimen atractivo, se verificó para ambos modelos que en el límite de interacción muy fuerte los pares de fermiones se comportan como bosones ideales. Esta situación corresponde a una separación característica entre las partículas que componen el par muy pequeña comparada con las dimensiones del sistema. Por su parte, para partículas con interacción repulsiva en una trampa armónica se verificó que aún en el límite de interacción muy fuerte los pares de fermiones noanzan a tener un comportamiento bosónico.
To determine how bosonic is the behavior of pairs formed by distinguishable fermions with contact interaction in a continuos one-dimensional system we proposed two models: free particles and particles in a harmonic trap. For each one of them, we analytically determined the ground state of a single pair solving the independent time Schrödinguer equation. From this state, we extracted information about the bosonic behavior of the interacting pair in relation to the interaction strength. We studied the attractive regime for both models and also the repulsive regimen for particles in a harmonic trap. In the attractive regime, we verified for both models that in the strong interaction limit the pairs behave as ideal bosons. This situation corresponds to a characteristic separation between the particles of the pair very short compared with the dimensions of the system. For particles with repulsive interaction in a harmonic trap, we verify that even in the strong interaction regime the fermion pairs do not behave as bosons.
Fil: Jiménez, Martín Daniel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
ROSI, SARA. "Interacting Bosons in optical lattices: optimal control ground state production, entanglement characterization and 1D systems". Doctoral thesis, 2015. http://hdl.handle.net/2158/1004929.
Texto completo da fonteTsai, Ming-Wei, e 蔡明巍. "Split gate fabrication by electron beam lithography on GaAs/AlGaAs system for 1D quantum wire conductance". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/20258404414329790730.
Texto completo da fonteUtz, Yannic. "The Effect of In-Chain Impurities on 1D Antiferromagnets: An NMR Study on Doped Cuprate Spin Chains". Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30141.
Texto completo da fonteCapítulos de livros sobre o assunto "1D quantum gas"
Matveev, K. A., e L. I. Glazman. "Scattering on an Impurity in a Weakly Interacting 1D Electron Gas". In Quantum Dynamics of Submicron Structures, 153–68. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_13.
Texto completo da fonteBruus, Henrik, e Karsten Flensberg. "1D Electron Gases and Luttinger Liquids". In Many–Body Quantum Theory in Condensed Matter Physics, 347–75. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198566335.003.0019.
Texto completo da fonteKelly, M. J. "The one-dimensional electron gas". In Low-Dimensional Semiconductors, 134–61. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198517818.003.0006.
Texto completo da fonteHaldane, F. D. M. "‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas". In Bosonization, 170–94. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812812650_0017.
Texto completo da fonteHaldane, F. D. M. "‘Luttinger liquid theory’ of one-dimensional quantum fluids I: Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas". In Exactly Solvable Models of Strongly Correlated Electrons, 416–40. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812798268_0035.
Texto completo da fonteChakraborty, Kunal, e Samrat Paul. "Effect of Intra-Band Tunneling on the Performance of Lead-Free Sn-Based Perovskite Solar Cell Using SCAPS-1D Simulator". In Advances in IT Standards and Standardization Research, 68–74. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9795-8.ch006.
Texto completo da fonteShakeel, R. "Fundamental Concepts of Topological Insulators". In Materials Research Foundations, 1–20. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644902851-1.
Texto completo da fonteTrabalhos de conferências sobre o assunto "1D quantum gas"
Sykes, A. G., D. M. Gangardt, M. J. Davis e K. V. Kheruntsyan. "Non-Local Pair Correlations and Quasi-Crystalline Phases in a 1D Bose Gas". In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qme17.
Texto completo da fonteKheruntsyan, K. V., T. Jacqmin, J. Armijo, T. Berrada e I. Bouchoule. "Sub-Poissonian fluctuations in a 1D Bose gas: from quantum quasi-condensate to the strongly interacting regime". In International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i291.
Texto completo da fonteBielejec, E. "1D-1D tunneling between vertically coupled GaAs/AlGaAs quantum wires". In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994408.
Texto completo da fonteSchnell, J. Ph, J. P. Pocholle, E. Barbier, J. Raffy, A. Delboulbe, C. Fromont, J. P. Hirtz e J. P. Huignard. "Investigation of a 1D GaAs-GaAIAs Multiple Quantum Wells Spatial Light Modulator". In Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/slma.1988.tha4.
Texto completo da fonteKim, S., H. Choi, M. Scherrer, K. Moselund e C. W. Lee. "Robustness of the topological interface state in a 1D photonic crystal resonator with an air-gap". In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542096.
Texto completo da fonteGreene, B. I., J. F. Mueller, J. Orenstein, D. Rapkine, S. Schmitt-Rink e M. Thakur. "Phonon-Mediated Optical Nonlinearities in Polydiacetylene". In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.tuc1.
Texto completo da fonteChen, Yunfei, Deyu Li, Jennifer R. Lukes e Zhonghua Ni. "Monte Carlo Simulation of Thermal Conductivities of Silicon Nanowires". In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72377.
Texto completo da fonte