Literatura científica selecionada sobre o tema "18MND5 low alloy steel"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "18MND5 low alloy steel".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "18MND5 low alloy steel"
Huo, Yong-Tao, Yan-Lin He, Na-Qiong Zhu, Min-Long Ding, Ren-Dong Liu e Yu Zhang. "Deformation Mechanism Investigation on Low Density 18Mn Steels under Different Solid Solution Treatments". Metals 11, n.º 9 (21 de setembro de 2021): 1497. http://dx.doi.org/10.3390/met11091497.
Texto completo da fonteLi, Chan, Yuting Xu, Dongao Han, Guohui Fan e Chenggang Yang. "Study on properties of 18MND5 steel forgings for PWR steam generator". Journal of Physics: Conference Series 2085, n.º 1 (1 de novembro de 2021): 012034. http://dx.doi.org/10.1088/1742-6596/2085/1/012034.
Texto completo da fonteYun, Duck Bin, Jin Sung Park, Sang Cheol Lee, Jong Kyo Choi e Sung Jin Kim. "Effect of Cr addition on the Corrosion-Wear Behaviors of 18Mn(V, Mo) Steel in a Seawater Environment". Korean Journal of Metals and Materials 61, n.º 9 (5 de setembro de 2023): 633–41. http://dx.doi.org/10.3365/kjmm.2023.61.9.633.
Texto completo da fonteYe, Tie, Ping Yang, Zhi Wen Lu e Chun Hua Ma. "Research of Deformation Law on High Manganese Steel with Different Alloy Composition". Key Engineering Materials 727 (janeiro de 2017): 9–16. http://dx.doi.org/10.4028/www.scientific.net/kem.727.9.
Texto completo da fonteKim, Bomi, Soojin Kim e Heesan Kim. "Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of the High-Strength Steel in 3.5% NaCl Solution". Advances in Materials Science and Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/7638274.
Texto completo da fonteHONMA, Yuta. "Welding of Low Alloy Steel". JOURNAL OF THE JAPAN WELDING SOCIETY 91, n.º 8 (2022): 578–87. http://dx.doi.org/10.2207/jjws.91.578.
Texto completo da fonteGagné, M., e Y. Trudel. "High performance low-alloy steel powders". Metal Powder Report 46, n.º 1 (janeiro de 1991): 40–44. http://dx.doi.org/10.1016/0026-0657(91)91991-e.
Texto completo da fontePrasad, V. V. Satya, A. Sambasiva Rao, U. Prakash e R. G. Baligidad. "Electroslag cladding of low alloy steel with stainless steel". Science and Technology of Welding and Joining 7, n.º 2 (abril de 2002): 102–6. http://dx.doi.org/10.1179/136217102225001359.
Texto completo da fonteShi, Bi, Hong Wei Song, Jun Bao Zhang, Han-Qing Cao e Xiu Fang Wang. "Low Carbon Low Alloy Submicro-Steel with Nano-Precipitation". Materials Science Forum 503-504 (janeiro de 2006): 511–14. http://dx.doi.org/10.4028/www.scientific.net/msf.503-504.511.
Texto completo da fonteZhang, Wenfeng, Zhong Liu, Tianming Li, Xiaogang Liu e Wei Xiong. "Effects of alloy elements on mechanical properties of low alloy wear resistant steel". E3S Web of Conferences 236 (2021): 02021. http://dx.doi.org/10.1051/e3sconf/202123602021.
Texto completo da fonteTeses / dissertações sobre o assunto "18MND5 low alloy steel"
Asselin, Cosson Théotime. "Étude des effets de fermeture des fissures de fatigue sous chargement à rapport de charge négatif". Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0030.
Texto completo da fonteFatigue, along with stress corrosion is the main cause of degradation observed in the components of French nuclear power plants. The justification of components regarding fatigue crack propagation is currently considered in a penalising way without taking into account the loading history. The study of fatigue closure effects makes it possible to determine driving forces representative of crack propagation. Loads inducing low cycle fatigue in primary components are of thermal origin. A campaign of reference tests on standardised specimens was first carried out before controlled total deformation tests on uniaxial specimens. An experimental set-up using Heaviside-DIC and electrical potential difference monitoring techniques was used to monitor crack propagation while evaluating crack opening rates at the surface and averaged over the specimen. It is shown that for the two materials studied, crack opening rates vary as a function of the level of stress applied, the load ratio and, to a lesser extent the crack depth. The combination of experimental results and the development of finite-element models makes it possible to define and evaluate driving forces based on deformation intensity factors and the J integral. A new crack propagation driving force calculation method adapted to cases of confined plasticity at the crack tip and to cases of generalised plasticity has been defined, making it possible to obtain a unified propagation law for each material that does not depend on the load ratio or the stress level
Cussac, Paul. "Influence d’imperfections surfaciques sur la tenue en fatigue de composants nucléaires". Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2020. http://www.theses.fr/2020ESMA0001.
Texto completo da fonteGiven the stringent requirements of high levels of safety in nuclear components, stakeholders of the French nuclear industry must anticipate the presence of residual surface imperfections in these components. Such imperfections could be introduced during manufacturing or maintenance operations. The incidence of surface irregularities on the fatigue strength of metallic components has tobe considered. Meanwhile, nuclear components can be loaded under low-cycle fatigue and large-scale plasticity conditions. The first objective of this work isthento assess to what extent the fatigue life of typical nuclear materials may be affected by the presence of such surface irregularities. In parallel, thisstudy aims at describing, qualitativelyand quantitatively, the crack initiation and propagation from these imperfections. In order to meet these objectives, a uni-axial fatigue test campaign, conducted under fully-reversed total axial strain control, in the air at room temperature, has been carried out on the cylindrical specimens (Φ 9 mm). Surface imperfections were artificially introduced onto the specimens. The electric potential trackingmethod has been mainly usedto monitor the crack initiation, micro and macro propagation phases from surface imperfections. Additional experimental and numerical actions have been carried out to calibrate the potential monitoring. The results of thetest campaigndemonstrate a significant influence of the presence of imperfections on the9 mm specimensfatigue strength. The useof electrical methodhas allowedto determine crackinitiation and growth ratesfrom surface imperfections. The identification of a representative parameter of the propagation driving force,in the context of generalized plasticity associated with the tests carried out,has also allowed to analysedata relating to propagation kinetics in a predictive perspective
Romo, Arango Sebastian A. "Low-Cycle Fatigue of Low-Alloy Steel Welded Joints". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1573054310351145.
Texto completo da fonteYin, Maggie Huaying Materials Science & Engineering Faculty of Science UNSW. "Metal dusting of iron and low alloy steel". Awarded by:University of New South Wales. School of Materials Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/25188.
Texto completo da fonteMyers, M. R. "Damage accumulation in a low alloy ferritic steel". Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.370975.
Texto completo da fonteBoåsen, Magnus. "Modeling framework for ageing of low alloy steel". Licentiate thesis, KTH, Hållfasthetslära (Inst.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246036.
Texto completo da fonteÅldring av låglegerade stål i kärntekniska användningsområden framträder typiskt som ett hårdnande och en försprödning av materialet. Detta på grund av utvecklingen av mikrostrukturen under bestrålning och under rent termiska förhållanden. Bestrålning introducerar jämt fördelade kluster av legeringsämnen. Termisk åldring har däremot visats ge upphov till en mer ojämn fördelning. Klustren hämmar dislokationsrörelsen i materialet och ger därigenom upphov till en ökning av materialets sträckgräns, vid en mer påtaglig åldring det även leda till ett sänkt arbetshårdnande på grund av lokalisering av plastisk töjning i s.k. kanaler/band. Försprödning är en sänkning av materialets brottseghet som en följd av de mikrostrukturella förändringar som sker vid åldring. Arbetet som presenteras i den här avhandlingen har gjorts i syfte till att ta fram ett möjligt ramverk för modellering av låglegerade stål.I Artikel I, används en töjningsgradientbaserad plasticitetsteori för att kunna fånga längdskalebeteenden. Längdskalan i teorin antas vara relaterad till dislokationernas medelfria väg och den förändring den genomgår vid plastisk deformation. Flera utvecklingslagar för längdskalan har analyserats och implementerats i en finita element kod för 2D plan deformation. Denna implementering har använts för att lösa ett testproblem bestående av ren böjning med syfte att undersöka effekterna av utvecklingen hos längdskalan. Alla de utvecklingslagar som presenteras i artikeln ger en minskande längdskala, vilket leder till vad som valt att kallas förlust av icke-lokalitet. Fenomenet leder till ett övergripande mjuknande vid fall där den plastiska töjningsgradienten har stor inverkan på lösningen. Resultaten är i preliminär överenstämmelse med de typer av lokalisering av plastisk töjning som observerats i starkt bestrålade material.I Artikel II utvecklas ett generaliserat spänningsmått i syfte att beskriva klyvbrott, här benämnt effektivt normalspänningsmått. Detta har använts i samband med en icke-lokal svagaste länk modell, som har applicerats på två experimentella studier från den öppna litteraturen i syfte att studera effekterna av det effektiva normalspänningsmåttet. Utöver detta presenteras även nya experiment på ytspruckna provstavar under fyrpunktsböj. I artikeln visas att modellen återskapar sannolikheten för brott för alla undersökta experimentuppställningar, d.v.s. modellen visas vara väl duglig för att överföra brottseghet mellan geometrier.
QC 20190312
Chatterjee, Amit. "Hydrogen degradation of plain carbon and low alloy steels /". The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487264603219536.
Texto completo da fonteDonohoe, C. J. "Corrosion fatigue of a high strength low alloy steel". Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322985.
Texto completo da fonteWalker, Nigel Stuart. "Type IV creep cavitation in low alloy ferritic steel weldments". Thesis, University of Bristol, 1997. http://hdl.handle.net/1983/efa6973c-9a3d-4a95-8297-61f12cbde92d.
Texto completo da fonteCooper, David. "The boundary lubricated friction and wear of low alloy steel". Thesis, Aston University, 1989. http://publications.aston.ac.uk/8067/.
Texto completo da fonteLivros sobre o assunto "18MND5 low alloy steel"
International Iron and Steel Institute. Committee on Technology., ed. High strength low alloy steels. Brussels, Belgium: International Iron and Steel Institute, 1987.
Encontre o texto completo da fonteSociety, Iron and Steel, ed. Steel products manual.: Carbon, high strength low alloy, and alloy. Warrendale, PA: Iron and Steel Society, 1995.
Encontre o texto completo da fonteSociety, Iron and Steel, ed. Steel products manual.: Rolled floor plates, carbon, high strength low alloy, and alloy steel. [Warrendale, Pa.]: Iron and Steel Society, 1991.
Encontre o texto completo da fonteSociety, Iron and Steel, ed. Steel products manual.: Rolled floor plates, carbon, high strength low alloy, and alloy steel. [Warrendale, Pa.]: Iron and Steel Society, 1997.
Encontre o texto completo da fonteSociety, Iron and Steel, ed. Steel products manual.: Carbon and high strength low alloy steel. [Warrendale, Pa.]: Iron & Steel Society, 1998.
Encontre o texto completo da fonteSociety, Iron and Steel, ed. Steel products manual.: Carbon and high strength low alloy steel. [Warrendale, PA]: Iron and Steel Society, 1991.
Encontre o texto completo da fonteDicken, Rachel. Trace element embrittlement in a low alloy steel. Manchester: University of Manchester, 1994.
Encontre o texto completo da fonte1923-, Tamura Imao, ed. Thermomechanical processing of high-strength low-alloy steels. London: Butterworths, 1988.
Encontre o texto completo da fonteFarrar, J. C. M. The alloy tree: A guide to low-alloy steels, stainless steels and nickel-base alloys. Cambridge: Woodhead, 2004.
Encontre o texto completo da fonteSociety, Iron and Steel, ed. Sheet steel: Carbon, high strength low alloy, alloy, uncoated, metallic coated, coil coated, coils, cut lengths, corrugated products. Warrendale, Pa: Iron and Steel Society, 1999.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "18MND5 low alloy steel"
Sha, Wei. "High-Strength Low-Alloy Steel". In Steels, 27–58. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4872-2_2.
Texto completo da fonteShi, Bi, Hong Wei Song, Jun Bao Zhang, Han-Qing Cao e Xiu Fang Wang. "Low Carbon Low Alloy Submicro-Steel with Nano-Precipitation". In Materials Science Forum, 511–14. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-985-7.511.
Texto completo da fonteAyoub, M., H. Hamed e M. El-Nagar. "Fracture Toughness Simulation of Low Alloy Steel". In Fracture of Engineering Materials and Structures, 119–24. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3650-1_15.
Texto completo da fontePark, Seong Jun, Dong Woo Suh, Chang Seok Oh e Sung Joon Kim. "Crystallographic Texture in Low Alloy TRIP Steel". In Materials Science Forum, 1423–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.1423.
Texto completo da fonteJansto, Steven G., Leonardo Silvestre e Houxin Wang. "Application of Niobium Low Carbon Low Alloy Structural Steel Approach". In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, 895–901. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119223399.ch112.
Texto completo da fonteJansto, Steven G., Leonardo Silvestre e Houxin Wang. "Application of Niobium Low Carbon Low Alloy Structural Steel Approach". In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, 895–901. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48767-0_112.
Texto completo da fonteSaucedo-Muñoz, M. L., R. Gómez-Martínez, A. Ortiz-Mariscal, V. M. Lopez-Hirata, J. D. Villegas-Cardenas e J. L. Gonzalez-Velazquez. "Carbide Precipitation in a Low Alloy Ferritic Steel". In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 791–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51493-2_76.
Texto completo da fonteJiang, Min, e Xinhua Wang. "Formation Thermodynamics of Inclusions in Al Deoxidized Low Alloy Steel". In Slag-Steel Reaction and Control of Inclusions in Al Deoxidized Special Steel, 53–66. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3463-6_3.
Texto completo da fonteFujibayashi, S., e T. Endo. "Creep behaviour of a low alloy ferritic steel weldment". In Creep and Fracture of Engineering Materials and Structures: Proceedings of the 9th International Conference: Proceedings of the 9th International Conference, 603–12. 9a ed. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003580089-75.
Texto completo da fonteShen, Y. F., e L. Zuo. "High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures". In HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, 187–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119223399.ch18.
Texto completo da fonteTrabalhos de conferências sobre o assunto "18MND5 low alloy steel"
Louerat, Jules, Olivier Ancelet, Stephane Marie, Stephane Chapuliot e Anna Dahl. "Consideration of Geometrical Effect in Fracture Mechanics Assessment for a Vessel Low Alloy Steel". In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-106100.
Texto completo da fonteLouerat, Jules, Olivier Ancelet, Stephane Marie, Stephane Chapuliot e Anna Dahl. "Consideration of Constraint Effect in Fracture Mechanics Assessment for a Vessel Low Alloy Steel". In ASME 2024 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/pvp2024-123672.
Texto completo da fonteAncelet, Olivier, Stephane Marie, Stéphane Chapuliot e Aurore Parrot. "Application of the J-Q Methodology to Consider the Geometrical Effect on Fracture for Large Steam-Generator Tubesheet". In ASME 2023 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/pvp2023-106269.
Texto completo da fonteAncelet, Olivier, Stephane Marie, Stephane Chapuliot e Aurore Parrot. "Fracture Mechanics Assessment of the Steam-Generator Tubesheet Plate Through a Modified Global Approach to Consider the Geometrical Effect on Fracture". In ASME 2024 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/pvp2024-123456.
Texto completo da fonteŚLIWIŃSKI, Piotr, Kamil KUBIK e Mateusz KOPYŚCIANSKI. "Low-Alloy Steel Electron Beam Hardening". In METAL 2022. TANGER Ltd., 2022. http://dx.doi.org/10.37904/metal.2022.4411.
Texto completo da fonteCancio, Maria Jose, Bruno Giacomel Eloff, Gustavo Kissner, Martin Valdez e Francisco Vouilloz. "High Strength Low Alloy Steel for HPHT Wells". In Offshore Technology Conference-Asia. Offshore Technology Conference, 2014. http://dx.doi.org/10.4043/24746-ms.
Texto completo da fonteKawase, Kinya, Koichiro Morimoto, Tohru Kohno e Hiroki Yanagawa. "High Temperature Sintering of Low Alloy Steel Powders". In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960381.
Texto completo da fonteZhou, Zilong. "Machine learning prediction for low-alloy steel strength". In 2022 International Conference on Mechatronics Engineering and Artificial Intelligence (MEAI 2022), editado por Chuanjun Zhao. SPIE, 2023. http://dx.doi.org/10.1117/12.2672650.
Texto completo da fontePOKUSOVÁ, Marcela, Ivan MORÁVEK, Zuzana GABRIŠOVÁ, Ján LACH, Norbert KOVÁČIK e Alena PRIBULOVÁ. "Plasma-electrolyte polishing of low-alloy steel 16MnCrS5". In METAL 2024, 246–51. TANGER Ltd., 2024. http://dx.doi.org/10.37904/metal.2024.4891.
Texto completo da fonteHabibi, S. M., H. Khorsand, K. Janghorban, H. Yoozbashizadeh e H. Rahmani Seraji. "Fatigue Behavior of a Low Alloy P/M Steel". In International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2112.
Texto completo da fonteRelatórios de organizações sobre o assunto "18MND5 low alloy steel"
Babu, S. S., S. A. David e T. DebRoy. Inclusion formation in low-alloy steel welds. Office of Scientific and Technical Information (OSTI), novembro de 1998. http://dx.doi.org/10.2172/290931.
Texto completo da fonteAuten, T. A., e J. V. Monter. Temperature and environmentally assisted cracking in low alloy steel. Office of Scientific and Technical Information (OSTI), abril de 1995. http://dx.doi.org/10.2172/101185.
Texto completo da fonteBlackburn, J. M. Factors Affecting the Strength and Toughness of Low Carbon Alloy Steel Weld Metal. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1998. http://dx.doi.org/10.21236/ada363763.
Texto completo da fonteWada, Y., R. Ishigaki, Y. Tanaka e K. Ohnishi. DTRS-3878-HEELAS Hydrogen Environment Embrittlement of Low Alloy Steel at Room Temperature. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 1998. http://dx.doi.org/10.55274/r0011860.
Texto completo da fonteA.J. Papworth, D.B. Knorr e D.B. Williams. The Evolution of the Segregation Behavior of Alloying Elements in a Low-Alloy Steel. Office of Scientific and Technical Information (OSTI), agosto de 2002. http://dx.doi.org/10.2172/820718.
Texto completo da fontePrevey, P. S., e J. T. Cammett. The Effect of Shot Peening Coverage on Residual Stress, Cold Work and Fatigue in a Ni-Cr-Mo Low Alloy Steel. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2000. http://dx.doi.org/10.21236/ada444574.
Texto completo da fonteZorba, Vassilia. A comparison on several calibration strategies for the determination of manganese contents in low-alloy steel by laser induced breakdown spectroscopy. Office of Scientific and Technical Information (OSTI), dezembro de 2019. http://dx.doi.org/10.2172/1577441.
Texto completo da fonteMelton e Bertaso. L52016 Active Flux GTAW Welding Process for Carbon Steel Line Pipe Applications - Phase 1. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 2003. http://dx.doi.org/10.55274/r0010376.
Texto completo da fontePatil e Cerkovnik. PR-425-123722-R01 Internally Lined Steel Risers as an Alternative to CRAs. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), outubro de 2013. http://dx.doi.org/10.55274/r0010573.
Texto completo da fontePatchett, B. M., e A. C. Bicknell. L51706 Higher-Strength SMAW Filler Metals. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), dezembro de 1993. http://dx.doi.org/10.55274/r0010418.
Texto completo da fonte