Artigos de revistas sobre o tema "140 GHz receiver"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "140 GHz receiver".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Gauthier, G. P., J. P. Raskin e G. M. Rebeiz. "A 140-170-GHz low-noise uniplanar subharmonic Schottky receiver". IEEE Transactions on Microwave Theory and Techniques 48, n.º 8 (2000): 1416–19. http://dx.doi.org/10.1109/22.859491.
Texto completo da fonteKoch, Stefan, Marc Guthoerl, Ingmar Kallfass, Arnulf Leuther e Shin Saito. "A 120–145 GHz Heterodyne Receiver Chipset Utilizing the 140 GHz Atmospheric Window for Passive Millimeter-Wave Imaging Applications". IEEE Journal of Solid-State Circuits 45, n.º 10 (outubro de 2010): 1961–67. http://dx.doi.org/10.1109/jssc.2010.2057830.
Texto completo da fonteVoll, Patricia, Lorene Samoska, Sarah Church, Judy M. Lau, Matthew Sieth, Todd Gaier, Pekka Kangaslahti, Mary Soria, Sami Tantawi e Dan Van Winkle. "A G-band cryogenic MMIC heterodyne receiver module for astronomical applications". International Journal of Microwave and Wireless Technologies 4, n.º 3 (12 de março de 2012): 283–89. http://dx.doi.org/10.1017/s1759078712000189.
Texto completo da fonteTesta, Paolo Valerio, Vincent Riess, Corrado Carta e Frank Ellinger. "A 130 nm-SiGe-BiCMOS Low-Power Receiver Based on Distributed Amplifier Techniques for Broadband Applications From 140 GHz to 200 GHz". IEEE Open Journal of Circuits and Systems 2 (2021): 508–19. http://dx.doi.org/10.1109/ojcas.2021.3103604.
Texto completo da fonteCarpenter, Sona, Zhongxia Simon He e Herbert Zirath. "Multi-functional D-bandI/Qmodulator/demodulator MMICs in SiGe BiCMOS technology". International Journal of Microwave and Wireless Technologies 10, n.º 5-6 (3 de abril de 2018): 596–604. http://dx.doi.org/10.1017/s1759078718000338.
Texto completo da fonteYoon, Daekeun, Kiryong Song, Mehmet Kaynak, Bernd Tillack e Jae-Sung Rieh. "An Oscillator and a Mixer for 140-GHz Heterodyne Receiver Front-End based on SiGe HBT Technology". JSTS:Journal of Semiconductor Technology and Science 15, n.º 1 (28 de fevereiro de 2015): 29–34. http://dx.doi.org/10.5573/jsts.2015.15.1.029.
Texto completo da fonteMeaney, Paul, Alexander Hartov, Timothy Raynolds, Cynthia Davis, Sebastian Richter, Florian Schoenberger, Shireen Geimer e Keith Paulsen. "Low Cost, High Performance, 16-Channel Microwave Measurement System for Tomographic Applications". Sensors 20, n.º 18 (22 de setembro de 2020): 5436. http://dx.doi.org/10.3390/s20185436.
Texto completo da fontePan, Quan, Xiongshi Luo, Zhenghao Li, Zhengzhe Jia, Fuzhan Chen, Xuewei Ding e C. Patrick Yue. "A 26-Gb/s CMOS optical receiver with a reference-less CDR in 65-nm CMOS". Journal of Semiconductors 43, n.º 7 (1 de julho de 2022): 072401. http://dx.doi.org/10.1088/1674-4926/43/7/072401.
Texto completo da fonteKorneev, D., S. Petrov e S. Markov. "The latest developments of microwave diagnostics for high temperature plasma in ELVA-1 company". Journal of Instrumentation 18, n.º 10 (1 de outubro de 2023): C10025. http://dx.doi.org/10.1088/1748-0221/18/10/c10025.
Texto completo da fonteSilva, A., J. Dias, J. Santos, F. da Silva e B. Gonçalves. "FM-CW compact reflectometer using DDS signal generation". Journal of Instrumentation 16, n.º 11 (1 de novembro de 2021): C11005. http://dx.doi.org/10.1088/1748-0221/16/11/c11005.
Texto completo da fonteSunada, K., R. Kawabe e J. Inatani. "Wide-Band Tunerless Mixer Mounts for 100 GHz and 150 GHz SIS receivers". International Astronomical Union Colloquium 140 (1994): 78–81. http://dx.doi.org/10.1017/s0252921100019175.
Texto completo da fonteMirbeik, Amir, Laleh Najafizadeh e Negar Ebadi. "A Synthetic Ultra-Wideband Transceiver for Millimeter-Wave Imaging Applications". Micromachines 14, n.º 11 (31 de outubro de 2023): 2031. http://dx.doi.org/10.3390/mi14112031.
Texto completo da fonteArcher, John W. "High‐performance, 2.5‐K cryostat incorporating a 100–120‐GHz dual polarization receiver". Review of Scientific Instruments 56, n.º 3 (março de 1985): 449–58. http://dx.doi.org/10.1063/1.1138321.
Texto completo da fonteWehres, Nadine, Bettina Heyne, Frank Lewen, Marius Hermanns, Bernhard Schmidt, Christian Endres, Urs U. Graf, Daniel R. Higgins e Stephan Schlemmer. "100 GHz Room-Temperature Laboratory Emission Spectrometer". Proceedings of the International Astronomical Union 13, S332 (março de 2017): 332–45. http://dx.doi.org/10.1017/s1743921317007803.
Texto completo da fonteChin, C. C., D. Derdall, J. Sebesta, F. Jiang, P. Dindo, G. Rodrigues, D. Bond et al. "A Low Noise 100 GHz Sideband-Separating Receiver". International Journal of Infrared and Millimeter Waves 25, n.º 4 (abril de 2004): 569–600. http://dx.doi.org/10.1023/b:ijim.0000020748.79086.e9.
Texto completo da fonteOgawa, H., A. Mizuno, H. Hoko, H. Ishikawa e Y. Fukui. "A 110 GHz SIS receiver for radio astronomy". International Journal of Infrared and Millimeter Waves 11, n.º 6 (junho de 1990): 717–26. http://dx.doi.org/10.1007/bf01010041.
Texto completo da fonteGoel, Ankush, Behnam Analui e Hossein Hashemi. "A 130-nm CMOS 100-Hz–6-GHz Reconfigurable Vector Signal Analyzer and Software-Defined Receiver". IEEE Transactions on Microwave Theory and Techniques 60, n.º 5 (maio de 2012): 1375–89. http://dx.doi.org/10.1109/tmtt.2012.2190091.
Texto completo da fonteValenta, Václav, Thomas Spreng, Shuai Yuan, Wolfgang Winkler, Volker Ziegler, Dragos Dancila, Anders Rydberg e Hermann Schumacher. "Design and experimental evaluation of compensated bondwire interconnects above 100 GHz". International Journal of Microwave and Wireless Technologies 7, n.º 3-4 (30 de março de 2015): 261–70. http://dx.doi.org/10.1017/s1759078715000070.
Texto completo da fonteWu, T. Y. "High dynamic range 140–220 GHz radiometer using dual-channel superheterodyne receivers". Electronics Letters 47, n.º 19 (2011): 1083. http://dx.doi.org/10.1049/el.2011.2066.
Texto completo da fonteSunada, K., R. Kawabe e J. Inatani. "Tunerless mixer mount for an SIS 80–120 GHz receiver". International Journal of Infrared and Millimeter Waves 14, n.º 6 (junho de 1993): 1251–71. http://dx.doi.org/10.1007/bf02146255.
Texto completo da fonteHan, Seog-Tae, Chang-Hoon Lee, Hyo-Ryoung Kim e Dong-Chul Park. "A 100-GHz-band heterodyne sis receiver for the trao telescope". International Journal of Infrared and Millimeter Waves 17, n.º 1 (janeiro de 1996): 105–19. http://dx.doi.org/10.1007/bf02088186.
Texto completo da fonteHe, Fei, Yuhan Ding, Zhongchen Xu, Menghu Ni, Yibo Tian, Zhenyi Zhang, Zhixiang Shi, Kailei Wang, Qian Xie e Zheng Wang. "A D-Band Direct-Conversion IQ Receiver with 28 dB CG and 7.3 dB NF in 130 nm SiGe Process". Micromachines 14, n.º 1 (29 de dezembro de 2022): 87. http://dx.doi.org/10.3390/mi14010087.
Texto completo da fonteJeon, Yuseok, e Jaejin Koo. "Design of Front-End Receiver and Matrix for 2–18 GHz with a Searching and Tracking Function for an ELINT System". Journal of Electromagnetic Engineering and Science 23, n.º 1 (31 de janeiro de 2023): 38–46. http://dx.doi.org/10.26866/jees.2023.1.r.142.
Texto completo da fonteShitov, S. V., V. P. Koshelets, S. A. Kovtonyuk, An B. Ermakov, N. D. Whyborn e C. O. Lindstrom. "Ultra-low-noise 100 GHz receiver based on parallel biased SIS arrays". Superconductor Science and Technology 4, n.º 9 (1 de setembro de 1991): 406–8. http://dx.doi.org/10.1088/0953-2048/4/9/006.
Texto completo da fonteYamamoto, Masayuki, Katsutoshi Yamaji, Keiichi Watazawa, Junji Inatani, Ryohei Kawabe e Takashi Kasuga. "Dual-frequency (40/100 GHz) SIS receiver for nobeyama millimeter-wave array". Electronics and Communications in Japan (Part II: Electronics) 72, n.º 12 (1989): 46–55. http://dx.doi.org/10.1002/ecjb.4420721206.
Texto completo da fonteGao, Shuang, Yutong Jiang, Zhuoxin Li, Qing Zhong, Min Zhu e Jiao Zhang. "2 km Uncompressed HD Video Wireless Transmission at 100 GHz Based on All-Optical Frequency Up- and Down-Conversion". Micromachines 15, n.º 12 (11 de dezembro de 2024): 1488. https://doi.org/10.3390/mi15121488.
Texto completo da fonteSieth, Matthew, Sarah Church, Judy M. Lau, Patricia Voll, Todd Gaier, Pekka Kangaslahti, Lorene Samoska et al. "Technology developments for a large-format heterodyne MMIC array at W-band". International Journal of Microwave and Wireless Technologies 4, n.º 3 (12 de abril de 2012): 299–307. http://dx.doi.org/10.1017/s1759078712000293.
Texto completo da fonteMasui, Sho, Yasumasa Yamasaki, Hideo Ogawa, Hiroshi Kondo, Koki Yokoyama, Takeru Matsumoto, Taisei Minami et al. "Development of a new wideband heterodyne receiver system for the Osaka 1.85 m mm–submm telescope: Receiver development and the first light of simultaneous observations in 230 GHz and 345 GHz bands with an SIS-mixer with 4–21 GHz IF output". Publications of the Astronomical Society of Japan 73, n.º 4 (12 de junho de 2021): 1100–1115. http://dx.doi.org/10.1093/pasj/psab046.
Texto completo da fonteEissa, M. H., A. Awny, M. Ko, K. Schmalz, M. Elkhouly, A. Malignaggi, A. C. Ulusoy e D. Kissinger. "A 220–275 GHz Direct-Conversion Receiver in 130-nm SiGe:C BiCMOS Technology". IEEE Microwave and Wireless Components Letters 27, n.º 7 (julho de 2017): 675–77. http://dx.doi.org/10.1109/lmwc.2017.2711559.
Texto completo da fonteWinkler, D., N. G. Ugras, A. H. Worsham, D. E. Prober, N. R. Erickson e P. F. Goldsmith. "A full-band waveguide SIS receiver with integrated tuning for 75-110 GHz". IEEE Transactions on Magnetics 27, n.º 2 (março de 1991): 2634–37. http://dx.doi.org/10.1109/20.133752.
Texto completo da fontePei, Xin, Jian Li, Xuefeng Duan e Hailong Zhang. "QTT Ultra-wideband Signal Acquisition and Baseband Data Recording System Design Based on the RFSoC Platform". Publications of the Astronomical Society of the Pacific 135, n.º 1049 (1 de julho de 2023): 075003. http://dx.doi.org/10.1088/1538-3873/ace12d.
Texto completo da fonteSilva Valdecasa, Guillermo, Jose A. Altabas, Monika Kupska, Jesper Bevensee Jensen e Tom K. Johansen. "A 5–50 GHz SiGe BiCMOS Linear Transimpedance Amplifier with 68 dBΩ Differential Gain towards Highly Integrated Quasi-Coherent Receivers". Electronics 10, n.º 19 (26 de setembro de 2021): 2349. http://dx.doi.org/10.3390/electronics10192349.
Texto completo da fonteAbbasi, Arash, e Frederic Nabki. "A Design Methodology for Wideband Current-Reuse Receiver Front-Ends Aimed at Low-Power Applications". Electronics 11, n.º 9 (6 de maio de 2022): 1493. http://dx.doi.org/10.3390/electronics11091493.
Texto completo da fonteDelgado, G. F. "Optically controlled quasi-optical local oscillator injection for a 100 GHz SIS imaging receiver". IEEE Transactions on Microwave Theory and Techniques 43, n.º 9 (1995): 2364–69. http://dx.doi.org/10.1109/22.414590.
Texto completo da fonteWorsham, A. H., D. E. Prober, J. H. Kang, J. X. Przybysz e M. J. Rooks. "High-quality sub-micron Nb trilayer tunnel junctions for a 100 GHz SIS receiver". IEEE Transactions on Magnetics 27, n.º 2 (março de 1991): 3165–67. http://dx.doi.org/10.1109/20.133883.
Texto completo da fonteTrinh, Van-Son, Jeong-Moon Song e Jung-Dong Park. "A 280 GHz 30GHz Bandwidth Cascaded Amplifier Using Flexible Interstage Matching Strategy in 130 nm SiGe Technology". Electronics 11, n.º 19 (24 de setembro de 2022): 3045. http://dx.doi.org/10.3390/electronics11193045.
Texto completo da fonteLopez-Diaz, Daniel, Ingmar Kallfass, Axel Tessmann, Rainer Weber, Hermann Massler, Arnulf Leuther, Michael Schlechtweg e Oliver Ambacher. "High-performance 60 GHz MMICs for wireless digital communication in 100 nm mHEMT technology". International Journal of Microwave and Wireless Technologies 3, n.º 2 (3 de março de 2011): 107–13. http://dx.doi.org/10.1017/s1759078711000109.
Texto completo da fonteSingh, Mehtab. "Simulative Analysis of DWDM-Based Multiple-Beam FSO Communication Network under Adverse Weather Conditions". Journal of Optical Communications 39, n.º 4 (25 de outubro de 2018): 401–5. http://dx.doi.org/10.1515/joc-2016-0158.
Texto completo da fonteF. Khazaal, Hasan, Hawraa Saadoon e Thamer Jamel. "The Effects Of Different Weather Conditions On 5G Millimeter Waves Propagations at 38 GHz and 73 GHz For Kut-City in Iraq". Wasit Journal of Engineering Sciences 10, n.º 2 (8 de junho de 2022): 20–33. http://dx.doi.org/10.31185/ejuow.vol10.iss2.274.
Texto completo da fonteSitompul, Peberlin Parulian, Pakhrur Razi, Timbul Manik, Mario Batubara, Musthofa Lathif, Farahhati Mumtahana, Rizal Suryana et al. "A Study for a Radio Telescope in Indonesia: Parabolic Design, Simulation of a Horn Antenna, and Radio Frequency Survey in Frequency of 0.045–18 GHz". Aerospace 11, n.º 1 (4 de janeiro de 2024): 52. http://dx.doi.org/10.3390/aerospace11010052.
Texto completo da fonteGolcuk, Fatih, Tumay Kanar e Gabriel M. Rebeiz. "A 90 - 100-GHz 4 x 4 SiGe BiCMOS Polarimetric Transmit/Receive Phased Array With Simultaneous Receive-Beams Capabilities". IEEE Transactions on Microwave Theory and Techniques 61, n.º 8 (agosto de 2013): 3099–114. http://dx.doi.org/10.1109/tmtt.2013.2269293.
Texto completo da fonteSakalas, Mantas, Niko Joram e Frank Ellinger. "A 1.5–40 GHz frequency modulated continuous wave radar receiver front-end". International Journal of Microwave and Wireless Technologies 13, n.º 6 (18 de fevereiro de 2021): 532–42. http://dx.doi.org/10.1017/s1759078721000118.
Texto completo da fonteLIU, J. J., M. A. DO, X. P. YU, K. S. YEO, S. JIANG e J. G. MA. "CMOS EVEN HARMONIC SWITCHING MIXER FOR DIRECT CONVERSION RECEIVERS". Journal of Circuits, Systems and Computers 15, n.º 02 (abril de 2006): 183–96. http://dx.doi.org/10.1142/s0218126606003131.
Texto completo da fonteAntonescu, Bogdan, Miead Tehrani Moayyed e Stefano Basagni. "Clustering Algorithms and Validation Indices for a Wide mmWave Spectrum". Information 10, n.º 9 (19 de setembro de 2019): 287. http://dx.doi.org/10.3390/info10090287.
Texto completo da fonteSolano-Perez, Jose Antonio, María-Teresa Martínez-Inglés, Jose-Maria Molina-Garcia-Pardo, Jordi Romeu, Lluis Jofre, José-Víctor Rodríguez e Antonio Mateo-Aroca. "Linear and Circular UWB Millimeter-Wave and Terahertz Monostatic Near-Field Synthetic Aperture Imaging". Sensors 20, n.º 6 (11 de março de 2020): 1544. http://dx.doi.org/10.3390/s20061544.
Texto completo da fonteAfroz, Sadia, e Kwang-Jin Koh. "$W$ -Band (92–100 GHz) Phased-Array Receive Channel With Quadrature-Hybrid-Based Vector Modulator". IEEE Transactions on Circuits and Systems I: Regular Papers 65, n.º 7 (julho de 2018): 2070–82. http://dx.doi.org/10.1109/tcsi.2017.2779941.
Texto completo da fonteDing, Cong, Bowen Wang, Haxin Song, Woogeun Rhee e Zhihua Wang. "A 3.5-GHz 0.24-nJ/b 100-Mb/s Fully Balanced FSK Receiver With Sideband Energy Detection". IEEE Solid-State Circuits Letters 4 (2021): 26–29. http://dx.doi.org/10.1109/lssc.2021.3050800.
Texto completo da fonteFUJIMOTO, Ryuichi, Mizuki MOTOYOSHI, Kyoya TAKANO, Uroschanit YODPRASIT e Minoru FUJISHIMA. "A 120-GHz Transmitter and Receiver Chipset with 9-Gbps Data Rate Using 65-nm CMOS Technology". IEICE Transactions on Electronics E95.C, n.º 7 (2012): 1154–62. http://dx.doi.org/10.1587/transele.e95.c.1154.
Texto completo da fonteAlves, Tiago M. F., e Adolfo V. T. Cartaxo. "100-Gb/s DD-MB-OFDM Metro Network With 11-Gb/s Granularity and 2.85-GHz Receiver". IEEE Photonics Technology Letters 27, n.º 24 (15 de dezembro de 2015): 2551–54. http://dx.doi.org/10.1109/lpt.2015.2475717.
Texto completo da fonteHuang, Ching‐Ying, Kun‐Long Wu, Robert Hu e Chi‐Yang Chang. "Analysis of wide‐IF‐band 65 nm‐CMOS mixer for 77–110 GHz radio‐astronomical receiver design". IET Circuits, Devices & Systems 13, n.º 3 (abril de 2019): 406–13. http://dx.doi.org/10.1049/iet-cds.2018.5269.
Texto completo da fonte