Artigos de revistas sobre o tema "Δ-FeOOH"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Δ-FeOOH".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Andrade, Thainá Gusmão, Mayra Soares Santos, Luiz Fernando Oliveira Maia, Tamise Emanuele Oliveira de Aquino, Lucas Zeferino da Silva, Vitor Chaves Silva, Márcia Cristina da Silva Faria et al. "Iron Oxide Nanomaterials for the Removal of Cr(VI) and Pb(II) from Contaminated River After Mariana Mining Disaster". Journal of Nanoscience and Nanotechnology 21, n.º 3 (1 de março de 2021): 1711–20. http://dx.doi.org/10.1166/jnn.2021.19089.
Texto completo da fonteLu, Bin, Mei Qin, Ping Li, Shu Ping Wang e Yu Wei. "The Influence Factors on δ-FeOOH Nanosheets Preparation". Materials Science Forum 852 (abril de 2016): 401–6. http://dx.doi.org/10.4028/www.scientific.net/msf.852.401.
Texto completo da fonteWu, Shijiao, Jianwei Lu, Zecong Ding, Na Li, Fenglian Fu e Bing Tang. "Cr(vi) removal by mesoporous FeOOH polymorphs: performance and mechanism". RSC Advances 6, n.º 85 (2016): 82118–30. http://dx.doi.org/10.1039/c6ra14522a.
Texto completo da fonteMelo, Wiviane E. R. de, Karoline S. Nantes, Ana L. H. K. Ferreira, Márcio C. Pereira, Luiz H. C. Mattoso, Ronaldo C. Faria e André S. Afonso. "A Disposable Carbon-Based Electrochemical Cell Modified with Carbon Black and Ag/δ-FeOOH for Non-Enzymatic H2O2 Electrochemical Sensing". Electrochem 4, n.º 4 (14 de novembro de 2023): 523–36. http://dx.doi.org/10.3390/electrochem4040033.
Texto completo da fonteNantes, Karoline S., Ana L. H. K. Ferreira, Marcio C. Pereira, Francisco G. E. Nogueira e André S. Afonso. "A Novel Non-Enzymatic Efficient H2O2 Sensor Utilizing δ-FeOOH and Prussian Blue Anchoring on Carbon Felt Electrode". C 10, n.º 3 (9 de setembro de 2024): 82. http://dx.doi.org/10.3390/c10030082.
Texto completo da fonteJurkin, Tanja, Goran Štefanić, Goran Dražić e Marijan Gotić. "Synthesis route to δ-FeOOH nanodiscs". Materials Letters 173 (junho de 2016): 55–59. http://dx.doi.org/10.1016/j.matlet.2016.03.009.
Texto completo da fonteGotić, M., S. Popović e S. Musić. "Formation and characterization of δ-FeOOH". Materials Letters 21, n.º 3-4 (novembro de 1994): 289–95. http://dx.doi.org/10.1016/0167-577x(94)90192-9.
Texto completo da fonteMajzlan, Juraj, Christian Bender Koch e Alexandra Navrotsky. "Thermodynamic properties of feroxyhyte (δ′-FeOOH)". Clays and Clay Minerals 56, n.º 5 (1 de outubro de 2008): 526–30. http://dx.doi.org/10.1346/ccmn.2008.0560506.
Texto completo da fonteRen, Yingzhi, Xiaoming Sun, Yao Guan, Zhenglian Xiao, Ying Liu, Jianlin Liao e Zhengxing Guo. "Distribution of Rare Earth Elements plus Yttrium among Major Mineral Phases of Marine Fe–Mn Crusts from the South China Sea and Western Pacific Ocean: A Comparative Study". Minerals 9, n.º 1 (23 de dezembro de 2018): 8. http://dx.doi.org/10.3390/min9010008.
Texto completo da fonteXu, Chaowen, Masayuki Nishi e Toru Inoue. "Solubility behavior of δ-AlOOH and ε-FeOOH at high pressures". American Mineralogist 104, n.º 10 (1 de outubro de 2019): 1416–20. http://dx.doi.org/10.2138/am-2019-7064.
Texto completo da fontePerng, L. H., I. C. Tung e T. S. Chin. "Synthesis and Properties of Nanocrystalline δ-FeOOH". Le Journal de Physique IV 07, n.º C1 (março de 1997): C1–519—C1–520. http://dx.doi.org/10.1051/jp4:19971211.
Texto completo da fonteLi, Q. X., Z. Y. Wang, W. Han e E. H. Han. "Characterization of the Corrosion Products Formed on Carbon Steel in Qinghai Salt Lake Atmosphere". Corrosion 63, n.º 7 (1 de julho de 2007): 640–47. http://dx.doi.org/10.5006/1.3278414.
Texto completo da fonteBannai Campos, Paulo, Mariana de Rezende Bonesio, André Dias Lima, Adilson Cândido da Silva, Daiana Teixeira Mancini e Teodorico Castro Ramalho. "Xylose dehydration to furfural using niobium doped δ-FeOOH as catalyst". Journal of the Serbian Chemical Society, n.º 00 (2022): 85. http://dx.doi.org/10.2298/jsc220316085b.
Texto completo da fonteMadsen, Morten Bo, Steen Mørup, Christian J. W. Koch e Ole K. Borggaard. "A study of microcrystals of synthetic feroxyhite (δ'-FeOOH)". Surface Science Letters 156 (junho de 1985): A313. http://dx.doi.org/10.1016/0167-2584(85)90415-3.
Texto completo da fonteBo Madsen, Morten, Steen Mørup, Christian J. W. Koch e Ole K. Borggaard. "A study of microcrystals of synthetic feroxyhite (δ′FeOOH)". Surface Science 156 (junho de 1985): 328–34. http://dx.doi.org/10.1016/0039-6028(85)90591-6.
Texto completo da fontePereira, Márcio César, Eric Marsalha Garcia, Adilson Cândido da Silva, Eudes Lorençon, José Domingos Ardisson, Enver Murad, José Domingos Fabris, Tulio Matencio, Teodorico de Castro Ramalho e Marcus Vinícius J. Rocha. "Nanostructured δ-FeOOH: a novel photocatalyst for water splitting". Journal of Materials Chemistry 21, n.º 28 (2011): 10280. http://dx.doi.org/10.1039/c1jm11736j.
Texto completo da fonteKRISHNAMURTI, G. S. R., e P. M. HUANG. "THE CATALYTIC ROLE OF BIRNESSITE IN THE TRANSFORMATION OF IRON". Canadian Journal of Soil Science 67, n.º 3 (1 de agosto de 1987): 533–43. http://dx.doi.org/10.4141/cjss87-050.
Texto completo da fonteHAO, S., X. WANG, Y. WEI, Y. WANG e C. LIU. "Preparation and properties of nanosize MnZn ferrite from δ-FeOOH". Rare Metals 25, n.º 6 (outubro de 2006): 466–70. http://dx.doi.org/10.1016/s1001-0521(07)60127-2.
Texto completo da fonteFaria, Márcia C. S., Renedy S. Rosemberg, Cleide A. Bomfeti, Douglas S. Monteiro, Fernando Barbosa, Luiz C. A. Oliveira, Mariandry Rodriguez, Márcio C. Pereira e Jairo L. Rodrigues. "Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents". Chemical Engineering Journal 237 (fevereiro de 2014): 47–54. http://dx.doi.org/10.1016/j.cej.2013.10.006.
Texto completo da fonteNishida, Naoki, Shota Amagasa, Yoshio Kobayashi e Yasuhiro Yamada. "Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method". Applied Surface Science 387 (novembro de 2016): 996–1001. http://dx.doi.org/10.1016/j.apsusc.2016.06.179.
Texto completo da fontePersoons, R. M., D. G. Chambaere e E. De Grave. "Mössbauer effect study of the magnetic structure in δ-FeOOH". Hyperfine Interactions 28, n.º 1-4 (fevereiro de 1986): 647–50. http://dx.doi.org/10.1007/bf02061531.
Texto completo da fonteCorrêa, Silviana, Isael Aparecido Rosa, Gustavo A. Andolpho, Letícia Cristina de Assis, Maíra dos S. Pires, Lívia C. T. Lacerda, Francisco G. E. Nogueira et al. "Hybrid Materials Based on Magnetic Iron Oxides with Benzothiazole Derivatives: A Plausible Potential Spectroscopy Probe". International Journal of Molecular Sciences 22, n.º 8 (12 de abril de 2021): 3980. http://dx.doi.org/10.3390/ijms22083980.
Texto completo da fonteShinagawa, Tsutomu, Yuya Kanemoto e Atsushi Ohtaka. "Preparation of Oriented Nanoporous Magnetite Films by a Template-Free Solution Process from Iron Oxyhydroxide Films". ECS Meeting Abstracts MA2024-01, n.º 25 (9 de agosto de 2024): 1441. http://dx.doi.org/10.1149/ma2024-01251441mtgabs.
Texto completo da fonteDzeranov, Artur, Lyubov Bondarenko, Denis Pankratov, Mikhail Prokof‘ev, Gulzhian Dzhardimalieva, Sharipa Jorobekova, Nataliya Tropskaya, Ludmila Telegina e Kamila Kydralieva. "Iron Oxides Nanoparticles as Components of Ferroptosis-Inducing Systems: Screening of Potential Candidates". Magnetochemistry 9, n.º 1 (23 de dezembro de 2022): 3. http://dx.doi.org/10.3390/magnetochemistry9010003.
Texto completo da fonteSzytuła, A., B. Penc e E. Stec-Kuźniar. "Crystal Structure of Synthetic Feroxyhite δ-FeOOH Studied with Neutron Diffraction". Acta Physica Polonica A 142, n.º 2 (agosto de 2022): 306–8. http://dx.doi.org/10.12693/aphyspola.142.306.
Texto completo da fonteIshikawa, Tatsuo, Akemi Yasukawa, Kazuhiko Kandori e Ryuji Orii. "Textures of tetradecahedron δ-FeOOH particles and their thermal decomposition products". J. Chem. Soc., Faraday Trans. 90, n.º 17 (1994): 2567–71. http://dx.doi.org/10.1039/ft9949002567.
Texto completo da fonteKaneko, K., e K. Inouye. "The NO Chemisorption Activity of δ-FeOOH Having Different Magnetic Properties". Adsorption Science & Technology 3, n.º 1 (março de 1986): 11–18. http://dx.doi.org/10.1177/026361748600300103.
Texto completo da fonteZhang, Zonghuai, Beibei He, Liangjian Chen, Huanwen Wang, Rui Wang, Ling Zhao e Yansheng Gong. "Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa0.5Sr0.5Co2O5+δ Nanorods". ACS Applied Materials & Interfaces 10, n.º 44 (15 de outubro de 2018): 38032–41. http://dx.doi.org/10.1021/acsami.8b12372.
Texto completo da fonteZhang, Li, Hongsheng Yuan, Yue Meng e Ho-kwang Mao. "Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH". Proceedings of the National Academy of Sciences 115, n.º 12 (5 de março de 2018): 2908–11. http://dx.doi.org/10.1073/pnas.1720510115.
Texto completo da fonteTavares, Tássia Silva, Eduardo Pereira da Rocha, Francisco Guilherme Esteves Nogueira, Juliana Arriel Torres, Maria Cristina Silva, Kamil Kuca e Teodorico C. Ramalho. "Δ-FeOOH as Support for Immobilization Peroxidase: Optimization via a Chemometric Approach". Molecules 25, n.º 2 (8 de janeiro de 2020): 259. http://dx.doi.org/10.3390/molecules25020259.
Texto completo da fonteZhao, Ziqi, Fuxi Bao, Jiawen Wang, Zongli Gu, Yanbing Huang, Chaocao Cao, Yidan Yuan, Changhong Sun e Wen Guo. "Construction of δ-FeOOH/NiMn2S4 heterointerface for efficient alkaline oxygen evolution reaction". Fuel 384 (março de 2025): 133980. https://doi.org/10.1016/j.fuel.2024.133980.
Texto completo da fonteCorrêa, Silviana, Lívia C. T. Lacerda, Maíra dos S. Pires, Marcus V. J. Rocha, Francisco G. E. Nogueira, Adilson C. da Silva, Marcio C. Pereira, Angela D. B. de Brito, Elaine F. F. da Cunha e Teodorico C. Ramalho. "Synthesis, Structural Characterization, and Thermal Properties of the Poly(methylmethacrylate)/δ-FeOOH Hybrid Material: An Experimental and Theoretical Study". Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/2462135.
Texto completo da fonteHuang, Sucheng, e Yazhou Fu. "Enrichment Characteristics and Mechanisms of Critical Metals in Marine Fe-Mn Crusts and Nodules: A Review". Minerals 13, n.º 12 (9 de dezembro de 2023): 1532. http://dx.doi.org/10.3390/min13121532.
Texto completo da fonteLi, Jiajia, Yan Ding, Kaiyi Chen, Zhuoning Li, Huijuan Yang, Shijun Yue, Yuping Tang e Qizhao Wang. "δ-FeOOH coupled BiOBr0.5I0.5 for efficient photocatalysis-Fenton synergistic degradation of organic pollutants". Journal of Alloys and Compounds 903 (maio de 2022): 163795. http://dx.doi.org/10.1016/j.jallcom.2022.163795.
Texto completo da fonteda Silva, Adilson Candido, Monique Rocha Almeida, Mariandry Rodriguez, Alan Rodrigues Teixeira Machado, Luiz Carlos Alves de Oliveira e Márcio César Pereira. "Improved photocatalytic activity of δ-FeOOH by using H2O2 as an electron acceptor". Journal of Photochemistry and Photobiology A: Chemistry 332 (janeiro de 2017): 54–59. http://dx.doi.org/10.1016/j.jphotochem.2016.08.013.
Texto completo da fonteLiu, Hui, Hui Guo, Ping Li e Yu Wei. "Transformation from δ-FeOOH to hematite in the presence of trace Fe(II)". Journal of Physics and Chemistry of Solids 70, n.º 1 (janeiro de 2009): 186–91. http://dx.doi.org/10.1016/j.jpcs.2008.10.001.
Texto completo da fonteZhang, Huixuan, Jinning Wang, Xinyi Zhang, Bo Li e Xiuwen Cheng. "Enhanced removal of lomefloxacin based on peroxymonosulfate activation by Co3O4/δ-FeOOH composite". Chemical Engineering Journal 369 (agosto de 2019): 834–44. http://dx.doi.org/10.1016/j.cej.2019.03.132.
Texto completo da fonteZhao, Jiaqi, Li-Zhu Wu e Tierui Zhang. "Identifying the active phase derived from δ-FeOOH for photo-driven CO2 hydrogenation". Chem Catalysis 4, n.º 6 (junho de 2024): 101033. http://dx.doi.org/10.1016/j.checat.2024.101033.
Texto completo da fonteGonçalves, Mateus Aquino, e Teodorico Castro Ramalho. "Relaxation parameters of water molecules coordinated with Gd(III) complexes and hybrid materials based on δ-FeOOH (100) nanoparticles: A theoretical study of hyperfine inter-actions for CAs in MRI". Eclética Química Journal 45, n.º 4 (1 de outubro de 2020): 12–20. http://dx.doi.org/10.26850/1678-4618eqj.v45.4.2020.p12-20.
Texto completo da fonteJi, Xuefeng, Chuanqi Cheng, Zehao Zang, Lanlan Li, Xiang Li, Yahui Cheng, Xiaojing Yang et al. "Ultrathin and porous δ-FeOOH modified Ni3S2 3D heterostructure nanosheets with excellent alkaline overall water splitting performance". Journal of Materials Chemistry A 8, n.º 40 (2020): 21199–207. http://dx.doi.org/10.1039/d0ta07676g.
Texto completo da fonteOhira, Itaru, Jennifer M. Jackson, Natalia V. Solomatova, Wolfgang Sturhahn, Gregory J. Finkelstein, Seiji Kamada, Takaaki Kawazoe et al. "Compressional behavior and spin state of δ-(Al,Fe)OOH at high pressures". American Mineralogist 104, n.º 9 (1 de setembro de 2019): 1273–84. http://dx.doi.org/10.2138/am-2019-6913.
Texto completo da fontePolyakov, A. Yu, A. E. Goldt, T. A. Sorkina, I. V. Perminova, D. A. Pankratov, E. A. Goodilin e Y. D. Tretyakov. "Constrained growth of anisotropic magnetic δ-FeOOH nanoparticles in the presence of humic substances". CrystEngComm 14, n.º 23 (2012): 8097. http://dx.doi.org/10.1039/c2ce25886b.
Texto completo da fonteJiménez-Mateos, Juan M., Julian Morales e JoséL Tirado. "Textural evolution of α-Fe2O3 obtained by thermal and mechanochemical decomposition of δ-FeOOH". Journal of Colloid and Interface Science 122, n.º 2 (abril de 1988): 507–13. http://dx.doi.org/10.1016/0021-9797(88)90385-2.
Texto completo da fonteTsung-Shune, Chin, Deng Ming-Cheng e Hsu Sung-Lin. "Hexaferrite particles prepared by a novel flux method with δ-FeOOH as a precursor". Materials Chemistry and Physics 37, n.º 1 (fevereiro de 1994): 45–51. http://dx.doi.org/10.1016/0254-0584(94)90069-8.
Texto completo da fonteSamchenko, Dmitry, Gennadii Kochetov, Yuliia Trach, Denys Chernyshev e Andriy Kravchuk. "Influence of Technological Factors on the Formation and Transformation of Iron-Containing Phases in the Process of Ferritization of Exhausted Etching Solutions". Water 16, n.º 8 (10 de abril de 2024): 1085. http://dx.doi.org/10.3390/w16081085.
Texto completo da fonteSalari, Marjan, Gholam Reza Rakhshandehroo, Mohammad Reza Nikoo, Mohammad Mahdi Zerafat e Mehrdad Ghorbani Mooselu. "Optimal degradation of Ciprofloxacin in a heterogeneous Fenton-like process using (δ-FeOOH)/MWCNTs nanocomposite". Environmental Technology & Innovation 23 (agosto de 2021): 101625. http://dx.doi.org/10.1016/j.eti.2021.101625.
Texto completo da fonteHU, J., I. LO e G. CHEN. "Performance and mechanism of chromate (VI) adsorption by δ-FeOOH-coated maghemite (γ-Fe2O3) nanoparticles". Separation and Purification Technology 58, n.º 1 (1 de dezembro de 2007): 76–82. http://dx.doi.org/10.1016/j.seppur.2007.07.023.
Texto completo da fontePinto, Izabela S. X., Pedro H. V. V. Pacheco, Jakelyne Viana Coelho, Eudes Lorençon, José D. Ardisson, José D. Fabris, Patterson P. de Souza, Klaus W. H. Krambrock, Luiz C. A. Oliveira e Márcio C. Pereira. "Nanostructured δ-FeOOH: An efficient Fenton-like catalyst for the oxidation of organics in water". Applied Catalysis B: Environmental 119-120 (maio de 2012): 175–82. http://dx.doi.org/10.1016/j.apcatb.2012.02.026.
Texto completo da fonteZhou, Yuerong, Shengwen Zhou, Ming Yi, Yunhe Li, Jiangwei Shang e Xiuwen Cheng. "Enhanced peroxymonosulfate activation for organic decontamination by Ni-doped δ-FeOOH under visible-light assistance". Environmental Research 265 (janeiro de 2025): 120472. http://dx.doi.org/10.1016/j.envres.2024.120472.
Texto completo da fonteIshikawa, Tatsuo, Wei Yan Cai e Kazuhiko Kandori. "Characterization of the thermal decomposition products of δ-FeOOH by Fourier-transform infrared spectroscopy and N2adsorption". J. Chem. Soc., Faraday Trans. 88, n.º 8 (1992): 1173–77. http://dx.doi.org/10.1039/ft9928801173.
Texto completo da fonte