Artigos de revistas sobre o tema "Β-amyloid structures"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Β-amyloid structures".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Taguchi, Yuzuru, Hiroki Otaki e Noriyuki Nishida. "Mechanisms of Strain Diversity of Disease-Associated in-Register Parallel β-Sheet Amyloids and Implications About Prion Strains". Viruses 11, n.º 2 (28 de janeiro de 2019): 110. http://dx.doi.org/10.3390/v11020110.
Texto completo da fonteChatani, Eri, Keisuke Yuzu, Yumiko Ohhashi e Yuji Goto. "Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils". International Journal of Molecular Sciences 22, n.º 9 (21 de abril de 2021): 4349. http://dx.doi.org/10.3390/ijms22094349.
Texto completo da fontePaulus, Agnes, Anders Engdahl, Yiyi Yang, Antonio Boza-Serrano, Sara Bachiller, Laura Torres-Garcia, Alexander Svanbergsson et al. "Amyloid Structural Changes Studied by Infrared Microspectroscopy in Bigenic Cellular Models of Alzheimer’s Disease". International Journal of Molecular Sciences 22, n.º 7 (26 de março de 2021): 3430. http://dx.doi.org/10.3390/ijms22073430.
Texto completo da fonteSulatskaya, Anna I., Anastasiia O. Kosolapova, Alexander G. Bobylev, Mikhail V. Belousov, Kirill S. Antonets, Maksim I. Sulatsky, Irina M. Kuznetsova, Konstantin K. Turoverov, Olesya V. Stepanenko e Anton A. Nizhnikov. "β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis". International Journal of Molecular Sciences 22, n.º 21 (20 de outubro de 2021): 11316. http://dx.doi.org/10.3390/ijms222111316.
Texto completo da fonteAlperstein, Ariel M., Joshua S. Ostrander, Tianqi O. Zhang e Martin T. Zanni. "Amyloid found in human cataracts with two-dimensional infrared spectroscopy". Proceedings of the National Academy of Sciences 116, n.º 14 (20 de março de 2019): 6602–7. http://dx.doi.org/10.1073/pnas.1821534116.
Texto completo da fonteFreitas, Raul O., Adrian Cernescu, Anders Engdahl, Agnes Paulus, João E. Levandoski, Isak Martinsson, Elke Hebisch et al. "Nano-Infrared Imaging of Primary Neurons". Cells 10, n.º 10 (27 de setembro de 2021): 2559. http://dx.doi.org/10.3390/cells10102559.
Texto completo da fonteYu, Xiang, e Jie Zheng. "Polymorphic Structures of Alzheimer's β-Amyloid Globulomers". PLoS ONE 6, n.º 6 (7 de junho de 2011): e20575. http://dx.doi.org/10.1371/journal.pone.0020575.
Texto completo da fonteYakupova, Elmira I., Liya G. Bobyleva, Sergey A. Shumeyko, Ivan M. Vikhlyantsev e Alexander G. Bobylev. "Amyloids: The History of Toxicity and Functionality". Biology 10, n.º 5 (1 de maio de 2021): 394. http://dx.doi.org/10.3390/biology10050394.
Texto completo da fonteTycko, Robert. "Molecular structure of amyloid fibrils: insights from solid-state NMR". Quarterly Reviews of Biophysics 39, n.º 1 (fevereiro de 2006): 1–55. http://dx.doi.org/10.1017/s0033583506004173.
Texto completo da fonteFlynn, Jessica D., e Jennifer C. Lee. "Raman fingerprints of amyloid structures". Chemical Communications 54, n.º 51 (2018): 6983–86. http://dx.doi.org/10.1039/c8cc03217c.
Texto completo da fonteMakshakova, Olga N., Liliya R. Bogdanova, Dzhigangir A. Faizullin, Elena A. Ermakova e Yuriy F. Zuev. "Sulfated Polysaccharides as a Fighter with Protein Non-Physiological Aggregation: The Role of Polysaccharide Flexibility and Charge Density". International Journal of Molecular Sciences 24, n.º 22 (12 de novembro de 2023): 16223. http://dx.doi.org/10.3390/ijms242216223.
Texto completo da fonteHewetson, Aveline, Nazmul H. Khan, Matthew J. Dominguez, Hoa Quynh Do, R. E. Kusko, Collin G. Borcik, Daniel J. Rigden et al. "Maturation of the functional mouse CRES amyloid from globular form". Proceedings of the National Academy of Sciences 117, n.º 28 (29 de junho de 2020): 16363–72. http://dx.doi.org/10.1073/pnas.2006887117.
Texto completo da fonteBalobanov, Vitalii, Rita Chertkova, Anna Egorova, Dmitry Dolgikh, Valentina Bychkova e Mikhail Kirpichnikov. "The Kinetics of Amyloid Fibril Formation by de Novo Protein Albebetin and Its Mutant Variants". Biomolecules 10, n.º 2 (5 de fevereiro de 2020): 241. http://dx.doi.org/10.3390/biom10020241.
Texto completo da fonteLeVine, Harry. "Thioflavine T interaction with amyloid β-sheet structures". Amyloid 2, n.º 1 (janeiro de 1995): 1–6. http://dx.doi.org/10.3109/13506129509031881.
Texto completo da fonteFändrich, Marcus, Matthias Schmidt e Nikolaus Grigorieff. "Recent progress in understanding Alzheimer's β-amyloid structures". Trends in Biochemical Sciences 36, n.º 6 (junho de 2011): 338–45. http://dx.doi.org/10.1016/j.tibs.2011.02.002.
Texto completo da fonteWickner, Reed B., Herman K. Edskes, David A. Bateman, Amy C. Kelly, Anton Gorkovskiy, Yaron Dayani e Albert Zhou. "Amyloid diseases of yeast: prions are proteins acting as genes". Essays in Biochemistry 56 (18 de agosto de 2014): 193–205. http://dx.doi.org/10.1042/bse0560193.
Texto completo da fonteOkumura, Hisashi, e Satoru G. Itoh. "Molecular Dynamics Simulation Studies on the Aggregation of Amyloid-β Peptides and Their Disaggregation by Ultrasonic Wave and Infrared Laser Irradiation". Molecules 27, n.º 8 (12 de abril de 2022): 2483. http://dx.doi.org/10.3390/molecules27082483.
Texto completo da fonteGorman, Paul M., e Avijit Chakrabartty. "Alzheimer β-amyloid peptides: Structures of amyloid fibrils and alternate aggregation products". Biopolymers 60, n.º 5 (2001): 381. http://dx.doi.org/10.1002/1097-0282(2001)60:5<381::aid-bip10173>3.0.co;2-u.
Texto completo da fonteChimon, Sandra, Medhat A. Shaibat, Christopher R. Jones, Diana C. Calero, Buzulagu Aizezi e Yoshitaka Ishii. "Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid". Nature Structural & Molecular Biology 14, n.º 12 (dezembro de 2007): 1157–64. http://dx.doi.org/10.1038/nsmb1345.
Texto completo da fonteWillem, Michael, e Marcus Fändrich. "A molecular view of human amyloid-β folds". Science 375, n.º 6577 (14 de janeiro de 2022): 147–48. http://dx.doi.org/10.1126/science.abn5428.
Texto completo da fonteDaskalov, Asen, Denis Martinez, Virginie Coustou, Nadia El Mammeri, Mélanie Berbon, Loren B. Andreas, Benjamin Bardiaux et al. "Structural and molecular basis of cross-seeding barriers in amyloids". Proceedings of the National Academy of Sciences 118, n.º 1 (21 de dezembro de 2020): e2014085118. http://dx.doi.org/10.1073/pnas.2014085118.
Texto completo da fonteRoterman, Irena, Katarzyna Stapor e Leszek Konieczny. "Secondary Structure in Amyloids in Relation to Their Wild Type Forms". International Journal of Molecular Sciences 24, n.º 1 (21 de dezembro de 2022): 154. http://dx.doi.org/10.3390/ijms24010154.
Texto completo da fonteSerpell, Louise. "Amyloid structure". Essays in Biochemistry 56 (18 de agosto de 2014): 1–10. http://dx.doi.org/10.1042/bse0560001.
Texto completo da fonteUrban, Jennifer M., Janson Ho, Gavin Piester, Riqiang Fu e Bradley L. Nilsson. "Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly". Molecules 24, n.º 10 (23 de maio de 2019): 1983. http://dx.doi.org/10.3390/molecules24101983.
Texto completo da fonteTJERNBERG, Lars O., Agneta TJERNBERG, Niklas BARK, Yuan SHI, Bela P. RUZSICSKA, Zimei BU, Johan THYBERG e David J. E. CALLAWAY. "Assembling amyloid fibrils from designed structures containing a significant amyloid β-peptide fragment". Biochemical Journal 366, n.º 1 (15 de agosto de 2002): 343–51. http://dx.doi.org/10.1042/bj20020229.
Texto completo da fonteJara-Moreno, Daniela, Ana L. Riveros, Andrés Barriga, Marcelo J. Kogan e Carla Delporte. "Inhibition of β-amyloid Aggregation of Ugni molinae Extracts". Current Pharmaceutical Design 26, n.º 12 (6 de maio de 2020): 1365–76. http://dx.doi.org/10.2174/1381612826666200113160840.
Texto completo da fonteTavanti, Francesco, Alfonso Pedone e Maria Cristina Menziani. "Disclosing the Interaction of Gold Nanoparticles with Aβ(1–40) Monomers through Replica Exchange Molecular Dynamics Simulations". International Journal of Molecular Sciences 22, n.º 1 (22 de dezembro de 2020): 26. http://dx.doi.org/10.3390/ijms22010026.
Texto completo da fontePellegrino, S., N. Tonali, E. Erba, J. Kaffy, M. Taverna, A. Contini, M. Taylor, D. Allsop, M. L. Gelmi e S. Ongeri. "β-Hairpin mimics containing a piperidine–pyrrolidine scaffold modulate the β-amyloid aggregation process preserving the monomer species". Chemical Science 8, n.º 2 (2017): 1295–302. http://dx.doi.org/10.1039/c6sc03176e.
Texto completo da fonteWestlind-Danielsson, Anita, e Gunnel Arnerup. "Spontaneous in Vitro Formation of Supramolecular β-Amyloid Structures, “βamy Balls”, by β-Amyloid 1−40 Peptide†". Biochemistry 40, n.º 49 (dezembro de 2001): 14736–43. http://dx.doi.org/10.1021/bi010375c.
Texto completo da fonteMurakoshi, Yuko, Tsuyoshi Takahashi e Hisakazu Mihara. "Modification of a Small β-Barrel Protein, To Give Pseudo-Amyloid Structures, Inhibits Amyloid β-Peptide Aggregation". Chemistry - A European Journal 19, n.º 14 (1 de fevereiro de 2013): 4525–31. http://dx.doi.org/10.1002/chem.201202762.
Texto completo da fonteAlmeida, Zaida L., e Rui M. M. Brito. "Amyloid Disassembly: What Can We Learn from Chaperones?" Biomedicines 10, n.º 12 (17 de dezembro de 2022): 3276. http://dx.doi.org/10.3390/biomedicines10123276.
Texto completo da fonteTycko, Robert, Kimberly L. Sciarretta, Joseph P. R. O. Orgel e Stephen C. Meredith. "Evidence for Novel β-Sheet Structures in Iowa Mutant β-Amyloid Fibrils". Biochemistry 48, n.º 26 (7 de julho de 2009): 6072–84. http://dx.doi.org/10.1021/bi9002666.
Texto completo da fonteZhizhin, Gennadiy Vladimirovich. "On the Possible Spatial Structures of the β-Amyloid". International Journal of Applied Research on Public Health Management 7, n.º 1 (janeiro de 2022): 1–8. http://dx.doi.org/10.4018/ijarphm.290380.
Texto completo da fontePham, Johnny D., Nicholas Chim, Celia W. Goulding e James S. Nowick. "Structures of Oligomers of a Peptide from β-Amyloid". Journal of the American Chemical Society 135, n.º 33 (8 de agosto de 2013): 12460–67. http://dx.doi.org/10.1021/ja4068854.
Texto completo da fonteMuvva, Charuvaka, Natarajan Arul Murugan e Venkatesan Subramanian. "Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations". International Journal of Molecular Sciences 22, n.º 6 (23 de março de 2021): 3244. http://dx.doi.org/10.3390/ijms22063244.
Texto completo da fonteFolmert, Kristin, Malgorzata Broncel, Hans v. Berlepsch, Christopher Hans Ullrich, Mary-Ann Siegert e Beate Koksch. "Inhibition of peptide aggregation by means of enzymatic phosphorylation". Beilstein Journal of Organic Chemistry 12 (18 de novembro de 2016): 2462–70. http://dx.doi.org/10.3762/bjoc.12.240.
Texto completo da fonteÁbrahám, Ágnes, Flavio Massignan, Gergő Gyulai, Miklós Katona, Nóra Taricska e Éva Kiss. "Comparative Study of the Solid-Liquid Interfacial Adsorption of Proteins in Their Native and Amyloid Forms". International Journal of Molecular Sciences 23, n.º 21 (30 de outubro de 2022): 13219. http://dx.doi.org/10.3390/ijms232113219.
Texto completo da fontePusara, Srdjan. "Molecular Dynamics Insights into the Aggregation Behavior of N-Terminal β-Lactoglobulin Peptides". International Journal of Molecular Sciences 25, n.º 9 (25 de abril de 2024): 4660. http://dx.doi.org/10.3390/ijms25094660.
Texto completo da fonteSønderby, Thorbjørn Vincent, Zahra Najarzadeh e Daniel Erik Otzen. "Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies". Molecules 27, n.º 13 (24 de junho de 2022): 4080. http://dx.doi.org/10.3390/molecules27134080.
Texto completo da fonteMorris, Kyle L., Alison Rodger, Matthew R. Hicks, Maya Debulpaep, Joost Schymkowitz, Frederic Rousseau e Louise C. Serpell. "Exploring the sequence–structure relationship for amyloid peptides". Biochemical Journal 450, n.º 2 (15 de fevereiro de 2013): 275–83. http://dx.doi.org/10.1042/bj20121773.
Texto completo da fonteLee, Myungwoon, Tuo Wang, Olga V. Makhlynets, Yibing Wu, Nicholas F. Polizzi, Haifan Wu, Pallavi M. Gosavi et al. "Zinc-binding structure of a catalytic amyloid from solid-state NMR". Proceedings of the National Academy of Sciences 114, n.º 24 (31 de maio de 2017): 6191–96. http://dx.doi.org/10.1073/pnas.1706179114.
Texto completo da fonteLipke, Peter N., Marion Mathelié-Guinlet, Albertus Viljoen e Yves F. Dufrêne. "A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds". Pathogens 10, n.º 8 (11 de agosto de 2021): 1013. http://dx.doi.org/10.3390/pathogens10081013.
Texto completo da fonteDiaferia, Carlo, Nicole Balasco, Davide Altamura, Teresa Sibillano, Enrico Gallo, Valentina Roviello, Cinzia Giannini, Giancarlo Morelli, Luigi Vitagliano e Antonella Accardo. "Assembly modes of hexaphenylalanine variants as function of the charge states of their terminal ends". Soft Matter 14, n.º 40 (2018): 8219–30. http://dx.doi.org/10.1039/c8sm01441h.
Texto completo da fonteFlores-Fernández, José, Vineet Rathod e Holger Wille. "Comparing the Folds of Prions and Other Pathogenic Amyloids". Pathogens 7, n.º 2 (4 de maio de 2018): 50. http://dx.doi.org/10.3390/pathogens7020050.
Texto completo da fonteLomarat, Pattamapan, Sirirat Chancharunee, Natthinee Anantachoke, Worawan Kitphati, Kittisak Sripha e Nuntavan Bunyapraphatsara. "Bioactivity-guided Separation of the Active Compounds in Acacia Pennata Responsible for the Prevention of Alzheimer's Disease". Natural Product Communications 10, n.º 8 (agosto de 2015): 1934578X1501000. http://dx.doi.org/10.1177/1934578x1501000830.
Texto completo da fonteCohen, Mark L., Chae Kim, Tracy Haldiman, Mohamed ElHag, Prachi Mehndiratta, Termsarasab Pichet, Frances Lissemore et al. "Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-β". Brain 138, n.º 4 (13 de fevereiro de 2015): 1009–22. http://dx.doi.org/10.1093/brain/awv006.
Texto completo da fonteDarling, April L., e James Shorter. "Atomic Structures of Amyloid-β Oligomers Illuminate a Neurotoxic Mechanism". Trends in Neurosciences 43, n.º 10 (outubro de 2020): 740–43. http://dx.doi.org/10.1016/j.tins.2020.07.006.
Texto completo da fonteKim, S. T., e D. F. Weaver. "Theoretical studies on Alzheimer's disease: structures of β-amyloid aggregates". Journal of Molecular Structure: THEOCHEM 527, n.º 1-3 (agosto de 2000): 127–38. http://dx.doi.org/10.1016/s0166-1280(00)00485-1.
Texto completo da fonteGallardo, Rodrigo, Neil A. Ranson e Sheena E. Radford. "Amyloid structures: much more than just a cross-β fold". Current Opinion in Structural Biology 60 (fevereiro de 2020): 7–16. http://dx.doi.org/10.1016/j.sbi.2019.09.001.
Texto completo da fonteYagi-Utsumi, Maho, e Koichi Kato. "Conformational Variability of Amyloid-β and the Morphological Diversity of Its Aggregates". Molecules 27, n.º 15 (26 de julho de 2022): 4787. http://dx.doi.org/10.3390/molecules27154787.
Texto completo da fonte