Gotowa bibliografia na temat „ZnS nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ZnS nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ZnS nanoparticles"
Velázquez, Josian Luciano, i Sonia J. Bailón-Ruiz. "Generation of ZnS Nanostructures with Modified Chemical Surface". MRS Advances 4, nr 38-39 (2019): 2095–102. http://dx.doi.org/10.1557/adv.2019.226.
Pełny tekst źródłaChatterjee, Nilanjana, i Baibaswata Bhattacharjee. "An Analytic Contemplation of the Conspicuous Vicissitudes in the Histomorphology of Corpuscles of Stannius of a Freshwater CatfishMystus tengara(Hamilton, 1822) due to the Exposure of ZnS Nanoparticles". Scientifica 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/697053.
Pełny tekst źródłaHuang, Hsin-Liang, H. Paul Wang, Edward M. Eyring i Juu-En Chang. "Recovery of nanosize zinc from phosphor wastes with an ionic liquid". Environmental Chemistry 6, nr 3 (2009): 268. http://dx.doi.org/10.1071/en08098.
Pełny tekst źródłaMirnaya, Tatiana, Galina Yaremchuk i Alexander Kosheliev. "SYNTHESIS AND OPTICAL PROPERTIES OF MESOMORPHIC GLASSY NANOCOMPOSITES BASED ON CADMIUM CAPRYLATE WITH CdSe / ZnS HETERONANOPARTICLES". Ukrainian Chemistry Journal 85, nr 1 (15.02.2019): 13–18. http://dx.doi.org/10.33609/0041-6045.85.1.2019.13-18.
Pełny tekst źródłaHu, Siyi, Yu Ren, Yue Wang, Jinhua Li, Junle Qu, Liwei Liu, Hanbin Ma i Yuguo Tang. "Surface plasmon resonance enhancement of photoluminescence intensity and bioimaging application of gold nanorod@CdSe/ZnS quantum dots". Beilstein Journal of Nanotechnology 10 (3.01.2019): 22–31. http://dx.doi.org/10.3762/bjnano.10.3.
Pełny tekst źródłaBhattacharjee, Baibaswata, Nilanjana Chatterjee i Chung-Hsin Lu. "Harmful Impact of ZnS Nanoparticles on Daphnia sp. in the Western Part (Districts of Bankura and Purulia) of West Bengal, India". ISRN Nanomaterials 2013 (16.09.2013): 1–7. http://dx.doi.org/10.1155/2013/207239.
Pełny tekst źródłaI. Korsunskiy, Vladimir, Reinhard B. Neder, Andreas Hofmann, Sofia Dembski, Christina Graf i Eckart Rühl. "Aspects of the modelling of the radial distribution function for small nanoparticles". Journal of Applied Crystallography 40, nr 6 (10.11.2007): 975–85. http://dx.doi.org/10.1107/s0021889807038174.
Pełny tekst źródłaVasan, R., F. Gao, M. O. Manasreh i C. D. Heyes. "Investigation of charge transport between nickel oxide nanoparticles and CdSe/ZnS alloyed nanocrystals". MRS Advances 2, nr 51 (2017): 2935–41. http://dx.doi.org/10.1557/adv.2017.488.
Pełny tekst źródłaSunatkari, Swarnalata. "Study of structural and spectroscopic characterization of co-doped ZnS Nanoparticles capped with L-Arginine". Journal of Physics: Conference Series 2426, nr 1 (1.02.2023): 012036. http://dx.doi.org/10.1088/1742-6596/2426/1/012036.
Pełny tekst źródłaRai, S., i R. Kothari. "Synthesis and Spectroscopic Characterization of Zinc Sulphide nanoparticles using Microwave irradiation of Zinc complex of Thiosemicarbazone ligand as a Single Molecular precursor : Pharmacological activities". Digest Journal of Nanomaterials and Biostructures 18, nr 1 (styczeń 2023): 31–45. http://dx.doi.org/10.15251/djnb.2023.181.31.
Pełny tekst źródłaRozprawy doktorskie na temat "ZnS nanoparticles"
Curcio, Ana Laura [UNESP]. "Síntese e caracterização de materiais semicondutores nanoestruturados luminescentes à base de ZnS". Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138154.
Pełny tekst źródłaApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-29T17:42:15Z (GMT) No. of bitstreams: 1 curcio_al_me_rcla.pdf: 1672370 bytes, checksum: fd59b862449a04ac385f3661da6430f3 (MD5)
Made available in DSpace on 2016-04-29T17:42:15Z (GMT). No. of bitstreams: 1 curcio_al_me_rcla.pdf: 1672370 bytes, checksum: fd59b862449a04ac385f3661da6430f3 (MD5) Previous issue date: 2016-02-29
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Nanocristais tem sido extensivamente investigados nos últimos anos devido à sua ampla gama de aplicações em vários dispositivos tais como sensores, células solares, lasers, fotocatalisadores, fotodetectores, detectores de infravermelhos, diodos emissores de luz, materiais eletroluminescentes e outros materiais emissores de luz. Semicondutores nanocristalinos apresentam propriedades eletrônicas intermediárias entre aqueles de estrutura molecular e sólidos macrocristalinos, proporcionando uma ampla gama de aplicações. Entre estes materiais, o sulfeto de zinco (ZnS) puro ou dopado tem recebido notável atenção por causa de suas propriedades estruturais ópticas, versatilidade e potencial para várias aplicações tecnológicas. O ZnS é um típico semicondutor II-VI, com um gap direto de 3,6 eV à temperatura ambiente e aproximadamente 40 meV de energia de gap, sendo um bom material luminescente utilizado em telas, sensores e lasers. Como material de gap largo, o ZnS pode facilmente hospedar diferentes metais de transição como centros luminescentes. Entre estes íons de metais de transição para estruturas dopadas, os íons Cu2+e Mn2+ são atraentes pelas emissões de luz características e por apresentarem propriedades eficientes para aplicações como luminóforos. A inserção desses íons na estrutura do ZnS proporcionam defeitos que resultam em emissão no verde para os íons Cu2+e emissão no laranja para os íons Mn2+. Neste estudo, as amostras de ZnS pura e dopadas com Cu2+ e Mn2+ foram preparados pelo método solvotermal, que demonstra ser um processo eficaz para preparar nanopartículas. Uma vez preparadas, as estruturas das amostras nanoestruturadas foram caracterizadas e correlacionada s com propriedades fotoluminescentes. Os resultados de difração de raios X mostram que as amostras de ZnS foram cristalizadas completamente sem a presença de fases secundárias e os difratogramas correspondem à estrutura blenda cúbica de zinco com grupo espacial F-43m. Os espectros de XANES (X-ray Absorption Near Edge Structure) teóricos e experimentais na borda K do Zn indicam que a incorporação de átomos de Mn na matriz ZnS causam a formação de vacâncias de Zn e S, a qual é confirmada por ajustes de espectros EXAFS (Extended X-ray Absorption Fine Structure). Estas vacâncias estão relacionadas com um desvio para o vermelho observado no pico do espectro de fotoluminescência devido a adição de Mn na estrutura do ZnS. Para o ZnS puro, o pico é centrado em ~ 504 nm, relativo as vacâncias de S na amostra nanoestruturada. À medida que se aumenta a porcentagem de Mn na matriz ZnS, uma emissão no amarelo-laranja centrada em ~ 590 nm pode ser observada, associada com a transição 4T1-6A1 no interior de níveis 3d de Mn2+. A adição de íons Cu2+ ao ZnS resulta em um alargamento no pico do espectro de fotoluminescência decorrente de emissão no azul-verde, que está relacionada a recombinação de elétrons de níveis de defeitos mais profundos dos estados t2 do Cu próximos da banda de valência.
Nanocrystals has been extensively investigated in recent years due to its wide range of applications in various devices light emitting materials such as sensors, solar cells, lasers, photocatalysts, photodetectors, IR detectors, light emitting diodes and others. Nanocrystalline Semiconductors have electronic properties between those intermediate molecular macrocristalinos and solid structure, providing a wide range of applications. Among these materials, zinc sulfide (ZnS) pure or doped has received considerable attention because of its optical structural properties, versatility and potential for several technological applications. The ZnS is a typical II-VI semiconductor with a direct band gap of 3.6 eV at room temperature and about 40 meV in energy gap, and a good luminescent material for constrution of displays, lasers and sensors. As wide band gap material, ZnS can easily host different transition metals as luminescent centers. Among these ions of transition metal doped structures, Cu2+ and Mn2+ ions are attractive for light emission characteristics and for having effective properties for applications such as phosphors. The addition of these ions in ZnS structure provide defects that result in emission in the green for the Cu2+ ions and emission in orange for the Mn2+ ions. In this study, samples of pure ZnS and doped with Cu2+ and Mn2+ ions were prepared by solvotermal method, which demonstrate to be an effective process for preparing nanoparticles. Once prepared, the structures of the nanostructured samples were characterized and correlated with photoluminescent properties. The results of X-ray diffraction showed that the ZnS samples were completely crystallized without the presence of secondary phases and XRD patterns correspond to the structure of zinc blende to cubic space group F-43m. spectra XANES (X-ray Absorption Near Edge Structure) theoretical and experimental in the Zn K edge indicates that the inclusion of Mn atoms in the ZnS matrix cause the formation of Zn and S vacancies, which is confirmed by spectral adjustments EXAFS (Extended X-ray Absorption Fine Structure). These vacancies are associated with a red shift observed in the photoluminescence spectrum peak due to the addition of Mn in ZnS structure. For pure ZnS, the peak is centered at ~ 504 nm concerning the vacancies in the S nanostructured sample. As it increases the percentage of Mn in the ZnS matrix, in yellow-orange emission centered at ~ 590 nm can be observed, associated with the transition 4 T1- 6A1 inside 3d levels of Mn2+. Adding Cu2+ to the ZnS results in a broadening of the peak of the photoluminescence spectrum due to emission in blue-green, which is related to recombination deeper defect levels of electrons of t2 Cu states near the valence band.
Raevskaya, Alexandra, Oksana Rosovik, Andriy Kozytskiy, Oleksandr Stroyuk, Volodymyr Dzhagan i Dietrich R. T. Zahn. "Non-stoichiometric Cu–In–S@ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells". Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-220126.
Pełny tekst źródłaDieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Junior, João Batista Souza. "Síntese de nanoestruturas core/shell de Co/Au magnetoplasmônica e pontos quânticos de CdSe/ZnS". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-28072017-170738/.
Pełny tekst źródłaNanomaterials properties are size- and shape-controlled, such as the superparamagnetism phenomenon of magnetic nanoparticles or the quantum confinement of charge carriers of quantum dots. Therefore, synthesis of monodisperse spherical nanoparticles became extremely important over the past few deacades, since nanoparticles can be used for plenty of applications in technology and biomedicine. Magnetic nanoparticles and quantum dots are promising materials for diagnosis and therapy of cancer. Spherical nanoparticles of metallic cobalt were synthesized with mean diameter of 5,3 nm and standard deviation of 0,4 nm, lognormal distribution. A modified Langevin equation using the interacting superparamagnetic model was used to fit magnetization curves obtaining the mean magnetic diameter and standard deviation, 4,7 nm and 1,0 nm, respectively. The difference between these two diameters was assigned to the magnetic dead layer (∼3.0 Å), which does not contribute to the sample magnetization, being the saturation magnetization of cobalt nanoparticles around 125 emu g-1. Co/Au core/shell nanostructures were synthesized and the surface plasmon ressonance property was observed, an additional property also desired for biomedical applications, being the Co/Au core/shell system called magnetoplasmonic. CdSe quantum dots were synthesized with high size- and shape-controlled. Using different synthetic routes from the classic TOP-TOPO synthesis, and selenium dioxide as a precursor, the results show that and reducing agent is necessary and 1-octadecene solvent leads to better optical properties. CdSe samples showed a zinc blend (cubic phase) crystal structure, different from TOP-TOPO syntheses that leads to wurtzite structure (hexagonal phase). The growth kinetics of CdSe particles were also evaluated through aliquots from reaction showing exponential growth of particles diameter, as predicted on the theory of nucleation and growth. Fluorescence microscopy studies showed that quantum dots exhibited fluorescence intermittence behavior already reported in the literature as one fo the reasons for the quantum yield decrease. CdSe/ZnS core/shell nanostructures were obtained with high control of the coating layer thickness and the increase of the photoluminescence properties were shown.
Stroh, Albrecht. "Bildgebung von magnetisch markierten Stammzellen in experimentellen Krankheitsmodellen des ZNS mittels zellulärer Magnetresonanztomographie". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. http://dx.doi.org/10.18452/15534.
Pełny tekst źródłaThis thesis is dealing with the imaging of magnetically labeled stem cells in the CNS using magnetic resonance imaging (MRI). Stem cells were efficiently magnetically labeled with very small superparamagnetic iron-oxide particles (VSOP), without any lipofection agents. No significant impact on vitality, proliferation and ability to differentiate could be observed after the magnetic labeling of all cell populations investigated. Magnetically labeled embryonic stem cells were injected into the striatum of rats to evaluate their detection limit by MRI. At field strengths of 17.6 T, less than 100 cells could be discriminated from the brain parenchyma as T2*-weighted hypointensities. Histology proved the cellular origin of MRI-signal changes. In a rat model of Parkinsons’s Disease, magnetically labeled embryonic stem cells could be detected by MRI after intrastriatal injection for a time period of more than 6 months. No significant migration of transplanted cells could be observed, however significant inter-individual differences concerning the spatial distribution of cells could be found. Histologically, transplanted iron-oxide-labeled cells could still be detected in the vicinity of the injection tract six months after transplantation. In a mouse model of cerebral ischemia, the enrichment of systemically injected magnetically labeled mononuclear cells was detected non-invasively by MRI. 24 to 48 hours after injection of magnetically labeled cells, T2*-weighted hypointense signal changes could be observed in the border zone of the ischemia. Over all, this study showed that cellular MRI is capable of the sensitive non-invasive detection of small numbers of magnetically labeled cells over a long period of time.
Dengo, Nicola. "Ligand-free water-based approaches for the synthesis of metal sulfides nanostructures". Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424863.
Pełny tekst źródłaIn questa tesi sono stati sintetizzati solfuri metallici utilizzando metodi in soluzione acquosa che non prevedono l’uso di leganti. In particolare, ZnS, CuS, PbS, MnS e Ag2S sono stati ottenuti in forma cristallina ad una temperatura prossima a 0 °C e senza l’uso di leganti mediante un semplice metodo batch. Sono stati studiati la dimensione, la struttura cristallina, la composizione e i fenomeni di ossidazione delle particelle ottenute. È inoltre stato eseguito uno studio SAXS (Small Angle X-Ray Scattering) in-situ risolto nel tempo relativo alla sintesi di ZnS per valutarne la crescita nella miscela di reazione durante la sintesi batch. Sono inoltre stati studiati il comportamento in sospensione acquosa di particelle di ZnS e la loro interazione con sonde molecolari all’interfaccia liquido/solido. La sintesi di nanoparticelle di ZnS pure e drogate è stata eseguita mediante un metodo microfluidico ed uno CHFS (Continuous Flow Hydrothermal Synthesis). Nel caso di ZnS puro, le condizioni di sintesi sono state variate per ottenere informazioni sul meccanismo di formazione del materiale e valutare le potenzialità dei metodi utilizzati per controllare le proprietà dimensionali e strutturali delle nanoparticelle. Nel caso di ZnS drogato, l’incorporazione dei droganti nel materiale è stata quantificata e discussa. Le proprietà funzionali di alcuni campioni selezionati sono state studiate. Nel caso di ZnS puro è stata quantificata l’attività fotocatalitica per la HER (Hydrogen Evolution Reaction), mentre per il materiale drogato sono state misurate le proprietà di fotoluminescenza. È inoltre stata determinata la citotossicità di alcuni campioni ottenuti per via microfluidica in vista di potenziali applicazioni nella diagnostica per immagini. È stato eseguito uno studio approfondito sull’effetto di trattamenti termici e fenomeni di ossidazione sulle proprietà dimensionali, morfologiche, strutturali e composizionali delle nanostrutture e sui loro effetti sulla di attività fotocatalitica di nanoparticelle di ZnS di diversa dimensione. La strategia di caratterizzazione si è basata sull’uso complementare di tecniche diverse, quali l’XRD (X-Ray Diffraction) e la microscopia TEM (Transmission Electron Microscopy) per lo studio di proprietà dimensionali e strutturali, mentre XPS (X-ray Photoelectron Spectroscopy) e FTIR (Fourier Transform Infrared Spectroscopy) sono state usate per la determinazione della composizione superficiale. La caratterizzazione dei campioni è stata completata dalla spettroscopia Raman. I risultati ottenuti hanno mostrato la potenzialità dei metodi di sintesi proposti nell’ottenere il controllo di importanti proprietà dei materiali senza sfruttare l’uso di leganti superficiali, e hanno consentito lo studio della chimica della superficie esposta delle nanoparticelle sintetizzate.
Brayek, Amine. "Etude des propriétés photo-électrochimiques des structures cœur-coquille ZnO/ZnS électrodéposées sur verre-ITO". Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC075.
Pełny tekst źródłaHeterojunction structures are attracting lots of attention for enhancing the electron injection across the interface. ZnO@ZnS one-dimensional heterojunction films are synthesized on conducting glass substrates in a controlled way, using a simple two-step electrochemical deposition and a chemical sulfurization of ZnO nanowire array as reactive template. The photoelectrochemical (PEC) properties of the resulting hétérostructures were measured, using a homemade electrochemical tell illuminated with a standard Xenon lamp. The as-prepared ZnO@ZnS core—shell nanowire arrays are found to exhibit significantly enhanced photocurrent density for water splitting as compared to ZnO nanowire arrays. This is mainly due to the lower density of oxygen vacancies and other defects states. The special electron structure in the heterojunction helped to reduce the energy barrier height at the interface and enhanced the separation of photo-generated carriers. Thus, the photoelectrochemical performance was highly improved, and a photocurrent density of 0. 6 mAcm-2 at 0. 6 V (vs. Ag/AgC1) was obtained. Hence, our proposed structure is a promising candidate as a photoanode for solar energy-to-hydrogen conversion devices
Zobel, Mirijam [Verfasser], i Reinhard [Akademischer Betreuer] Neder. "Nanoparticle crystallization and solvent interface restructuring especially for ZnO nanoparticles in organic solvents / Mirijam Zobel. Gutachter: Reinhard Neder". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1081544090/34.
Pełny tekst źródłaSandner, Julian Christoph. "Die toxikologische Relevanz der Zn2+-Freisetzung bei der Degradation von ZnO-Nanopartikeln". Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-211704.
Pełny tekst źródłaPujalte, Igor. "Étude in vitro de la toxicité de nanoparticules métalliques (TiO2, ZnO, CdS) sur la cible rénale". Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21849/document.
Pełny tekst źródłaMany uncertainties remain about the potential toxic effect of nanoparticles (NPs), and their becoming in human organism. The aim of this study was to understand the cytotoxic mechanisms induced by metallic NPs, on a secondary target organ, the kidney. NPs were able to cross biological barriers, be carried in blood to kidney cells, on glomerular or tubular cells. This study was performed in vitro, with NPs of titanium (TiO2: 12 nm), zinc (ZnO: 75 nm) and cadmium (CdS: 8 nm), on mesangial IP-15 cells and epithelial HK-2 cells. Results showed effects depending on cell type, chemical nature of NPs and their solubility. TiO2 NPs have no cytotoxic effect (IC50>100µg/cm²), probably due to their insolubility. Exposure to CdS and ZnO NPs lead to cell death (IC50< 7 µg/ cm²). Release of metallic cations Cd2+ and Zn2+ are the main causes of toxicity. ROS production and disruption of oxidative cellular balance (GSH/ GSSG) were correlated to the cytotoxic effects of ZnO and CdS NPs. A molecular approach was used to identify signaling pathways involved in oxidative stress response (nuclear translocation of NF-kappaB and Nrf2).Internalization and accumulation of TiO2 and CdS NPs were responsible of oxidative stress induction and cytotoxic effect on long term exposure
Norman, Thaddeus Jude. "Optical and structural properties of gold nanoparticle aggregates and Mn 2+, CU 2+, and Ag 1+ doped ZnSe nanoparticles /". Diss., Digital Dissertations Database. Restricted to UC campuses, 2004. http://uclibs.org/PID/11984.
Pełny tekst źródłaKsiążki na temat "ZnS nanoparticles"
Sam, Dr S. Rinu. Nano-Physics: ZnS Nanoparticles. CSMFL Publications, 2017. http://dx.doi.org/10.19085/csmflpub.978-81-932784-1-3.
Pełny tekst źródłaNano Physics ZnS Nanoparticles. India: CSMFL Publications, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "ZnS nanoparticles"
Sooklal, Kelly, Brian M. Cullum, S. Michael Angel i Catherine J. Murphy. "The Photophysics of Mn2+ on ZnS Nanoclusters". W Nanoparticles in Solids and Solutions, 455–65. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8771-6_21.
Pełny tekst źródłaPuse, Ranjit Kumar, T. Ch Anil Kumar, Diip Mishra, Omprakash B. Pawar, M. K. Valsakumari i A. Arun Kumar. "ZnS Nanoparticles for High-Performance Supercapacitors". W Materials for Sustainable Energy Storage at the Nanoscale, 349–59. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003355755-29.
Pełny tekst źródłaCambrea, Lee R., Courtney A. Yelton i Heather A. Meylemans. "ZnS-AgInS2Fluorescent Nanoparticles for Low Level Metal Detection in Water". W ACS Symposium Series, 195–210. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1210.ch010.
Pełny tekst źródłaMiguel, Ana Sofia, Christopher Maycock i Abel Oliva. "Synthesis and Functionalization of CdSe/ZnS QDs Using the Successive Ion Layer Adsorption Reaction and Mercaptopropionic Acid Phase Transfer Methods". W Nanoparticles in Biology and Medicine, 143–55. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-953-2_10.
Pełny tekst źródłaStefan, M., S. V. Nistor i D. Ghica. "ZnS and ZnO Semiconductor Nanoparticles Doped with Mn2+ Ions. Size Effects Investigated by EPR Spectroscopy". W Size Effects in Nanostructures, 3–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44479-5_1.
Pełny tekst źródłaKole, A. K., i P. Kumbhakar. "Observation of Nonlinear Optical Properties of Chemically Synthesized Cu2+ Doped ZnS Nanoparticles". W Springer Proceedings in Physics, 169–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34216-5_18.
Pełny tekst źródłaLiu, W., J. G. Liang, Y. L. Zhu, H. B. Xu, Z. K. He i X. L. Yang. "CdSe/ZnS Quantum Dots Loaded Solid Lipid Nanoparticles: Novel Luminescent Nanocomposite Particles". W Materials Science Forum, 170–73. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-995-4.170.
Pełny tekst źródłaLallianmawii i N. Mohondas Singh. "Effect of Eu3+ on the Luminescence and Photocatalytic Properties of ZnS Nanoparticles". W Advances in Sustainability Science and Technology, 13–28. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4189-6_2.
Pełny tekst źródłaLakhotiya, Harish, Gagandeep, Chetan Saini, Ankit Goyal, K. V. R. Rao i S. L. Kothari. "Structural and Optical Study of ZnS Nanoparticles Doped with Different Concentration of Co". W Springer Proceedings in Physics, 183–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34216-5_19.
Pełny tekst źródłaBose, Karthikeyan, Lakshminarasimhan Harini, Thimma Mohan Viswanathan, Krishnan Sundar i Thandavarayan Kathiresan. "Function of ZnS Nanoparticles on Stress-Mediated Apoptosis in Mouse Retinal Pigment Epithelial Cells". W Biotechnology for Toxicity Remediation and Environmental Sustainability, 267–83. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003312390-9.
Pełny tekst źródłaStreszczenia konferencji na temat "ZnS nanoparticles"
Joicy, S., P. Sivakumar, N. Ponpandian i P. Thangadurai. "ZnO nanorods decorated with ZnS nanoparticles". W NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4917787.
Pełny tekst źródłaGonzales, Gavin P., Arjun Senthil, Gema J. Alas, Nathan J. Withers, Sergei A. Ivanov, Dale L. Huber i Marek Osiński. "Synthesis and characterization of colloidal ZnTe/ZnS quantum dots". W Colloidal Nanoparticles for Biomedical Applications XIV, redaktorzy Wolfgang J. Parak i Marek Osiński. SPIE, 2019. http://dx.doi.org/10.1117/12.2515646.
Pełny tekst źródłaKaur, Jagdeep, Manoj Sharma i O. P. Pandey. "Photocatalytic studies of capped ZnS nanoparticles". W PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810110.
Pełny tekst źródłaReymatias, Mark V., Arjun Senthil, Dominic Bosomtwi, Shruti I. Gharde, Gema J. Alas, DeYannah J. Walker, Adreanna G. Rael i in. "Synthesis and characterization of colloidal CdSexS1-x/ZnS quantum dots". W Colloidal Nanoparticles for Biomedical Applications XV, redaktorzy Marek Osiński i Antonios G. Kanaras. SPIE, 2020. http://dx.doi.org/10.1117/12.2553001.
Pełny tekst źródłaMa, Xiying, Jingwei Song i Zhangshen Yu. "Observation the Optical Characteristics of ZnS and Mn-Doped ZnS Nanoparticles". W 2012 Symposium on Photonics and Optoelectronics (SOPO 2012). IEEE, 2012. http://dx.doi.org/10.1109/sopo.2012.6271129.
Pełny tekst źródłaVirpal, Anita Hastir, Jasmeet Kaur, Gurpreet Singh i Ravi Chand Singh. "Photoluminescence study of ZnS and ZnS:Pb nanoparticles". W PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON CONDENSED MATTER PHYSICS 2014 (ICCMP 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4915370.
Pełny tekst źródłaSMIJOVÁ, Julie, Pavlína PEIKERTOVÁ, Kateřina MAMULOVÁ KUTLÁKOVÁ i Jonáš TOKARSKÝ. "Hydrothermal and microwave synthesis of ZnS nanoparticles". W NANOCON 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2020.3704.
Pełny tekst źródłaAli, Amani H., Hassan Abd-elhamid Hashem i Ahmed Elfalaky. "Preparation, Properties, and Characterization of ZnS Nanoparticles". W ASEC 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/asec2022-13829.
Pełny tekst źródłaHussain, Syed Zajif, Irshad Hussain, Faheem Amin, Nadeem Sabir i Wahid Qayyum. "Photoluminescence properties of Co and Ni co-doped CdS/ZnS core/shell nanoparticles". W Colloidal Nanoparticles for Biomedical Applications XIII, redaktorzy Xing-Jie Liang, Wolfgang J. Parak i Marek Osiński. SPIE, 2018. http://dx.doi.org/10.1117/12.2291454.
Pełny tekst źródłaGlukhovskoy, Evgeniy, Оksana Shinkarenko i Anna Kolesnikova. "Control method conductive properties ZnS quantum dots". W Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications X, redaktorzy Samuel Achilefu i Ramesh Raghavachari. SPIE, 2018. http://dx.doi.org/10.1117/12.2284660.
Pełny tekst źródłaRaporty organizacyjne na temat "ZnS nanoparticles"
Scholtes, Kevin T., Christopher B. Jacobs, Eric S. Muckley, Patrick M. Caveney i Ilia N. Ivanov. Scalable processing of ZnS nanoparticles for high photoluminescence efficiency quantum dots. Office of Scientific and Technical Information (OSTI), listopad 2018. http://dx.doi.org/10.2172/1482456.
Pełny tekst źródła